7,288 research outputs found
The radio luminosity distribution of pulsars in 47 Tucanae
We have used the Australia Telescope Compact Array to seek the integrated
radio flux from all the pulsars in the core of the globular cluster 47 Tucanae.
We have detected an extended region of radio emission and have calibrated its
flux against the flux distribution of the known pulsars in the cluster. We find
the total 20-cm radio flux from the cluster's pulsars to be S = 2.0 +/- 0.3
mJy. This implies the lower limit to the radio luminosity distribution to be
L_1400 = 0.4 mJy kpc^2 and the size of the observable pulsar population to be N
< 30.Comment: 7 pages, 4 figures, MNRAS in pres
Atmospheric Escape from Hot Jupiters
The extra-solar planet HD209458b has been found to have an extended
atmosphere of escaping atomic hydrogen (Vidal-Madjar et al. 2003), suggesting
that ``hot Jupiters'' closer to their parent stars could evaporate. Here we
estimate the atmospheric escape (so called evaporation rate) from hot Jupiters
and their corresponding life time against evaporation. The calculated
evaporation rate of HD209458b is in excellent agreement with the HI Lyman-alpha
observations. We find that the tidal forces and high temperatures in the upper
atmosphere must be taken into account to obtain reliable estimate of the
atmospheric escape. Because of the tidal forces, we show that there is a new
escape mechanism at intermediate temperatures at which the exobase reaches the
Roche lobe. From an energy balance, we can estimate plausible values for the
planetary exospheric temperatures, and thus obtain typical life times of
planets as a function of their mass and orbital distance.Comment: A&A Letters, in pres
Reversible skew laurent polynomial rings and deformations of poisson automorphisms
A skew Laurent polynomial ring S = R[x(+/- 1); alpha] is reversible if it has a reversing automorphism, that is, an automorphism theta of period 2 that transposes x and x(-1) and restricts to an automorphism gamma of R with gamma = gamma(-1). We study invariants for reversing automorphisms and apply our methods to determine the rings of invariants of reversing automorphisms of the two most familiar examples of simple skew Laurent polynomial rings, namely a localization of the enveloping algebra of the two-dimensional non-abelian solvable Lie algebra and the coordinate ring of the quantum torus, both of which are deformations of Poisson algebras over the base field F. Their reversing automorphisms are deformations of Poisson automorphisms of those Poisson algebras. In each case, the ring of invariants of the Poisson automorphism is the coordinate ring B of a surface in F-3 and the ring of invariants S-theta of the reversing automorphism is a deformation of B and is a factor of a deformation of F[x(1), x(2), x(3)] for a Poisson bracket determined by the appropriate surface
Hard x-ray polarimetry with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI)
Although designed primarily as a hard X-ray imager and spectrometer, the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is also capable of measuring the polarization of hard X-rays (20-100 keV) from solar flares. This capability arises from the inclusion of a small unobstructed Be scattering element that is strategically located within the cryostat that houses the array of nine germanium detectors. The Ge detectors are segmented, with both a front and rear active volume. Low energy photons (below about 100 keV) can reach a rear segment of a Ge detector only indirectly, by scattering. Low energy photons from the Sun have a direct path to the Be and have a high probability of Compton scattering into a rear segment of a Ge detector. The azimuthal distribution of these scattered photons carries with it a signature of the linear polarization of the incident flux. Sensitivity estimates, based on simulations and in-flight background measurements, indicate that a 20-100 keV polarization sensitivity of less than a few percent can be achieved for X-class flares
Bayesian multiscale deconvolution applied to gamma-ray spectroscopy
A common task in gamma-ray astronomy is to extract spectral information, such as model constraints and incident photon spectrum estimates, given the measured energy deposited in a detector and the detector response. This is the classic problem of spectral “deconvolution” or spectral inversion. The methods of forward folding (i.e., parameter fitting) and maximum entropy “deconvolution” (i.e., estimating independent input photon rates for each individual energy bin) have been used successfully for gamma-ray solar flares (e.g., Rank, 1997; Share and Murphy, 1995). These methods have worked well under certain conditions but there are situations were they don’t apply. These are: 1) when no reasonable model (e.g., fewer parameters than data bins) is yet known, for forward folding; 2) when one expects a mixture of broad and narrow features (e.g., solar flares), for the maximum entropy method; and 3) low count rates and low signal-to-noise, for both. Low count rates are a problem because these methods (as they have been implemented) assume Gaussian statistics but Poisson are applicable. Background subtraction techniques often lead to negative count rates. For Poisson data the Maximum Likelihood Estimator (MLE) with a Poisson likelihood is appropriate. Without a regularization term, trying to estimate the “true” individual input photon rates per bin can be an ill-posed problem, even without including both broad and narrow features in the spectrum (i.e., amultiscale approach). One way to implement this regularization is through the use of a suitable Bayesian prior. Nowak and Kolaczyk (1999) have developed a fast, robust, technique using a Bayesian multiscale framework that addresses these problems with added algorithmic advantages. We outline this new approach and demonstrate its use with time resolved solar flare gamma-ray spectroscopy
Challenger STS-17 (41-G) post-flight best estimate trajectory products: Development and summary results
Results from the STS-17 (41-G) post-flight products are presented. Operational Instrumentation recorder gaps, coupled with the limited tracking coverage available for this high inclination entry profile, necessitated selection of an anchor epoch for reconstruction corresponding to an unusually low altitude of h approx. 297 kft. The final inertial trajectory obtained, BT17N26/UN=169750N, is discussed in Section I, i.e., relative to the problems encountered with the OI and ACIP recorded data on this Challenger flight. Atmospheric selection, again in view of the ground track displacement from the remote meteorological sites, constituted a major problem area as discussed in Section II. The LAIRS file provided by Langley was adopted, with NOAA data utilized over the lowermost approx. 7 kft. As discussed in Section II, the Extended BET, ST17BET/UN=274885C, suggests a limited upper altitude (H approx. 230 kft) for which meaningful flight extraction can be expected. This is further demonstrated, though not considered a limitation, in Section III wherein summary results from the AEROBET (NJ0333 with NJ0346 as duplicate) are presented. GTFILEs were generated only for the selected IMU (IMU2) and the Rate Gyro Assembly/Accelerometer Assembly data due to the loss of ACIP data. Appendices attached present inputs for the generation of the post-flight products (Appendix A), final residual plots (Appendix B), a two second spaced listing of the relevant parameters from the Extended BET (Appendix C), and an archival section (Appendix D) devoting input (source) and output files and/or physical reels
In utero exposure to threat of evictions and preterm birth: evidence from the United States
OBJECTIVE: To estimate county-level associations between in utero exposure to threatened evictions and preterm birth in the United States. DATA SOURCES: Complete birth records were obtained from the National Center for Health Statistics (2009-2016). Threatened evictions were measured at the county level using eviction case filing data obtained from The Eviction Lab (2008-2016). Additional economic and demographic data were obtained from the United States Census Bureau and Bureau of Labor Statistics. STUDY DESIGN: We conducted a retrospective cohort analysis using 7.3 million births from 1,633 counties. We defined threatened eviction exposures as the z-score of average case filings over the pregnancy and by trimester. Our primary outcome was an indicator for preterm birth (born < 37 completed weeks of gestation). Secondary outcomes included a continuous measure for gestational length, a continuous measure for birth weight, and an indicator for low birth weight (born < 2500 g). We estimated within-county associations controlling for individual- and time-varying county-level characteristics, state-of-residence-year-and-month-of-conception fixed effects, and a county-specific time trend. DATA COLLECTION/EXTRACTION: We merged birth records with threatened eviction data at the county-month-year level using mother's county of residence at delivery and month-year of conception. We supplemented these data with information on county-level annual 18-and-over population, annual poverty rate, and monthly unemployment rate. PRINCIPAL FINDINGS: Increased levels of eviction case filings over a pregnancy were associated with an increased risk of prematurity and low birth weight. These associations appeared to be sensitive to exposure in the second and third trimesters. Associations with secondary outcomes and within various population subgroups were, in general, imprecisely estimated. CONCLUSIONS: Higher exposure to eviction case filings within counties, particularly in the latter stages of a pregnancy, was associated with an increased risk of adverse birth outcomes. Future research should identify the causal effect of threatened evictions on maternal and child health outcomes
Trajectory reconstruction and aerodynamic results from the first Discovery flight, STS-14(41-D)
Trajectory reconstruction results for the first Discovery flight are presented. Spacecraft dynamic measurements from IMU2 were utilized in conjunction with the ground based tracking data from two S-band stations, eight C-band, and five cameras at Edwards Air Force Base to determine the spacecraft trajectory from epoch through roll-out on Runway 17. Specifics as to the trajectory reconstruction are discussed in Section 1. The final inertial profile is BT14NO2/UN=169750N. Merging of this file with the final LAIRS atmosphere is discussed in Section 2. The final Extended BET is ST14BET/UN=274885C. Section 3 presents plots of relevant parameters from the AEROBET as well as aerodynamic performance comparison results. High frequency files for maneuver extraction were also generated as discussed in Section 4. Appendices are attached which contain: (1) spacecraft and physical parameters utilized, (2) final residuals obtained from the data fitting process, (3) listing of trajectory parameters, and (4) archival information
Post-flight BET products for the 2nd discovery entry, STS-19 (51-A)
The post-flight products for the second Discovery flight, STS-19 (51-A), are summarized. The inertial best estimate trajectory (BET), BT19D19/UN=169750N, was developed using spacecraft dynamic measurements from Inertial Measurement Unit 2 (IMU2) in conjunction with the best tracking coverage available for any of the earlier Shuttle entries. As a consequence of the latter, an anchor epoch was selected which conforms to an initial altitude of greater than a million feet. The Extended BET, ST19BET/UN=274885C, incorporated the previously mentioned inertial reconstructed state information and the Langley Atmospheric Information Retrieval System (LAIRS) atmosphere, ST19MET/UN=712662N, with some minor exceptions. Primary and back-up AEROBET reels are NK0165 and NK0201, respectively. This product was only developed over the lowermost 360 kft altitude range due to atmosphere problems but this relates to altitudes well above meaningful signal in the IMUs. Summary results generated from the AEROBET for this flight are presented with meaningful configuration and statistical comparisons from the previous thirteen flights. Modified maximum likelihood estimation (MMLE) files were generated based on IMU2 and the Rate Gyro Assembly/Accelerometer Assembly (RGA/AA), respectively. Appendices attached define spacecraft and physical constants utilized, show plots of the final tracking data residuals from the post-flight fit, list relevant parameters from the BET at a two second spacing, and retain for archival purpose all relevant input and output tapes and files generated
Stability analysis of polarized domains
Polarized ferrofluids, lipid monolayers and magnetic bubbles form domains
with deformable boundaries. Stability analysis of these domains depends on a
family of nontrivial integrals. We present a closed form evaluation of these
integrals as a combination of Legendre functions. This result allows exact and
explicit formulae for stability thresholds and growth rates of individual
modes. We also evaluate asymptotic behavior in several interesting limits.Comment: 12 pages, 3 figures, Late
- …