119 research outputs found

    A temperate former West Antarctic ice sheet suggested by an extensive zone of bed channels

    Get PDF
    Several recent studies predict that the West Antarctic Ice Sheet will become increasingly unstable under warmer conditions. Insights on such change can be assisted through investigations of the subglacial landscape, which contains imprints of former ice-sheet behavior. Here, we present radio-echo sounding data and satellite imagery revealing a series of ancient large sub-parallel subglacial bed channels preserved in the region between the Möller and Foundation Ice Streams, West Antarctica. We suggest that these newly recognized channels were formed by significant meltwater routed along the icesheet bed. The volume of water required is likely substantial and can most easily be explained by water generated at the ice surface. The Greenland Ice Sheet today exemplifies how significant seasonal surface melt can be transferred to the bed via englacial routing. For West Antarctica, the Pliocene (2.6–5.3 Ma) represents the most recent sustained period when temperatures could have been high enough to generate surface melt comparable to that of present-day Greenland. We propose, therefore, that a temperate ice sheet covered this location during Pliocene warm periods

    Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations

    Get PDF
    At tidewater glaciers, plume dynamics affect submarine melting, fjord circulation, and the mixing of meltwater. Models often rely on buoyant plume theory to parameterize plumes and submarine melting; however, these parameterizations are largely untested due to a dearth of near‐glacier measurements. Here we present a high‐resolution ocean survey by ship and remotely operated boat near the terminus of Kangerlussuup Sermia in west Greenland. These novel observations reveal the 3‐D structure and transport of a near‐surface plume, originating at a large undercut conduit in the glacier terminus, that is inconsistent with axisymmetric plume theory, the most common representation of plumes in ocean‐glacier models. Instead, the observations suggest a wider upwelling plume—a “truncated” line plume of ∼200 m width—with higher entrainment and plume‐driven melt compared to the typical axisymmetric representation. Our results highlight the importance of a subglacial outlet's geometry in controlling plume dynamics, with implications for parameterizing the exchange flow and submarine melt in glacial fjord models.NNX12AP50

    Is corporate environmental disclosure associated with firm value? A multi-country study of Gulf Cooperation Council firms

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.open access articleSeveral studies have found a relationship between corporate social and environmental disclosure and firm value or accounting profitability. Where environmental disclosure has been the focus, though, only single-country studies have been published; and most of the previous research concerns the developed world. This study examines the association between corporate environmental disclosure (CED) and firm value (FV) in the Gulf Cooperation Council (GCC) countries, where CED has been increasing from its previous low base. Findings from a multi-country sample of 500 firm-year observations using a 55-item unweighted environmental disclosure index suggest that CED is significantly and positively related to FV as measured by Tobin’s Q (TBQ). The relationship is robust to using a weighted version of the disclosure index, individual countries and environmental disclosure sub-indices. Some evidence of a positive relationship between CED and return on assets (ROA) is also found, but even where statistically significant, the relationship is much weaker than in the case of TBQ. For empirical and theoretical reasons, we recommend that future studies pay greater attention to market-based proxies, if possible when investigating the value relevance of CED in both developed and developing countries. Our results suggest that both managers and policymakers in GCC countries should take a positive view of expanded CED

    The Role of Individual Variables, Organizational Variables and Moral Intensity Dimensions in Libyan Management Accountants’ Ethical Decision Making

    Get PDF
    This study investigates the association of a broad set of variables with the ethical decision making of management accountants in Libya. Adopting a cross-sectional methodology, a questionnaire including four different ethical scenarios was used to gather data from 229 participants. For each scenario, ethical decision making was examined in terms of the recognition, judgment and intention stages of Rest’s model. A significant relationship was found between ethical recognition and ethical judgment and also between ethical judgment and ethical intention, but ethical recognition did not significantly predict ethical intention—thus providing support for Rest’s model. Organizational variables, age and educational level yielded few significant results. The lack of significance for codes of ethics might reflect their relative lack of development in Libya, in which case Libyan companies should pay attention to their content and how they are supported, especially in the light of the under-development of the accounting profession in Libya. Few significant results were also found for gender, but where they were found, males showed more ethical characteristics than females. This unusual result reinforces the dangers of gender stereotyping in business. Personal moral philosophy and moral intensity dimensions were generally found to be significant predictors of the three stages of ethical decision making studied. One implication of this is to give more attention to ethics in accounting education, making the connections between accounting practice and (in Libya) Islam. Overall, this study not only adds to the available empirical evidence on factors affecting ethical decision making, notably examining three stages of Rest’s model, but also offers rare insights into the ethical views of practising management accountants and provides a benchmark for future studies of ethical decision making in Muslim majority countries and other parts of the developing world

    Interferon lambda 4 impacts the genetic diversity of hepatitis C virus

    Get PDF
    Hepatitis C virus (HCV) is a highly variable pathogen that frequently establishes chronic infection. This genetic variability is affected by the adaptive immune response but the contribution of other host factors is unclear. Here, we examined the role played by interferon lambda-4 (IFN-λ4) on HCV diversity; IFN-λ4 plays a crucial role in spontaneous clearance or establishment of chronicity following acute infection. We performed viral genome-wide association studies using human and viral data from 485 patients of white ancestry infected with HCV genotype 3a. We demonstrate that combinations of host genetic variants, which determine IFN-λ4 protein production and activity, influence amino acid variation across the viral polyprotein - not restricted to specific viral proteins or HLA restricted epitopes - and modulate viral load. We also observed an association with viral di-nucleotide proportions. These results support a direct role for IFN-λ4 in exerting selective pressure across the viral genome, possibly by a novel mechanism

    The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords

    Get PDF
    Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we systematically evaluate how simulated plume structure and submarine melt during summer months depends on realistic ranges of subglacial discharge, glacier depth, and ocean stratification from 12 Greenland fjords. Our results show that grounding line depth is a strong control on plume-induced submarine melt: deep glaciers produce warm, salty subsurface plumes that undercut termini, and shallow glaciers produce cold, fresh surface-trapped plumes that can overcut termini. Due to sustained upwelling velocities, plumes in cold, shallow fjords can induce equivalent depth-averaged melt rates compared to warm, deep fjords. These results detail a direct ocean-ice feedback that can affect the Greenland Ice Sheet

    Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf

    Get PDF
    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change1, 2. The increased freshwater output from Antarctica is important in determining sea level rise1, the fate of Antarctic sea ice and its effect on the Earth’s albedo4, 5, ongoing changes in global deep-ocean ventilation6, and the evolution of Southern Ocean ecosystems and carbon cycling7, 8. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models3–5, 9 as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels10, 11, 12, 13, 14. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models

    Cumulative Prognostic Score Predicting Mortality in Patients Older Than 80 Years Admitted to the ICU.

    Get PDF
    OBJECTIVES: To develop a scoring system model that predicts mortality within 30 days of admission of patients older than 80 years admitted to intensive care units (ICUs). DESIGN: Prospective cohort study. SETTING: A total of 306 ICUs from 24 European countries. PARTICIPANTS: Older adults admitted to European ICUs (N = 3730; median age = 84 years [interquartile range = 81-87 y]; 51.8% male). MEASUREMENTS: Overall, 24 variables available during ICU admission were included as potential predictive variables. Multivariable logistic regression was used to identify independent predictors of 30-day mortality. Model sensitivity, specificity, and accuracy were evaluated with receiver operating characteristic curves. RESULTS: The 30-day-mortality was 1562 (41.9%). In multivariable analysis, these variables were selected as independent predictors of mortality: age, sex, ICU admission diagnosis, Clinical Frailty Scale, Sequential Organ Failure Score, invasive mechanical ventilation, and renal replacement therapy. The discrimination, accuracy, and calibration of the model were good: the area under the curve for a score of 10 or higher was .80, and the Brier score was .18. At a cut point of 10 or higher (75% of all patients), the model predicts 30-day mortality in 91.1% of all patients who die. CONCLUSION: A predictive model of cumulative events predicts 30-day mortality in patients older than 80 years admitted to ICUs. Future studies should include other potential predictor variables including functional status, presence of advance care plans, and assessment of each patient's decision-making capacity

    Structure and Functional Analysis of the RNA- and Viral Phosphoprotein-Binding Domain of Respiratory Syncytial Virus M2-1 Protein

    Get PDF
    Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-158–177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-158–177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1
    corecore