4,412 research outputs found

    Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production

    Full text link
    Synthesis of mesoporous graphene materials by softlate methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micellelate strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications

    Simulation study on the influence of bottom sub-regional cooling on 45 tons unidirectional solidification of steel ingot

    Get PDF
    In this paper, the temperature field and heat transfer stress mathematical model of the unidirectional solidification ingot of the traditional water-cooled chassis and the improved water-cooled chassis are established, and the numerical simulation calculation of 45 tons unidirectional solidification ingot is carried out by using the finite element simulation analysis method. The results show that adding proper forced cooling conditions to the bottom of ingot is beneficial to the balanced advance of the solidification front of molten steel. The improvement of the bottom forced cooling scheme obviously shortens the solidification time of the ingot. The water cooling at the bottom of the ingot is adapted to the air gap distribution to achieve uniform air gap distribution. The ingot solidifies evenly in the longitudinal direction to avoid bottom warpage

    Simulation study on effect of chassis water cooling on solidification of eleven tons flat steel ingot

    Get PDF
    In this paper, the solidification process of eleven tons flat steel ingot is simulated by the finite element analysis software PROCAST, and the solidification state of the ingot with and without chassis is analyzed and compared. The results show that the forced cooling chassis makes low temperature area of the bottom ingot enlarged. And it has little influence on the temperature field and the solidification speed of the upper ingot. For the small flat steel ingot, the forced cooling chassis will deteriorate the shrinkage

    Transitions To the Long-Resident State in coupled chaotic oscillators

    Full text link
    The behaviors of coupled chaotic oscillators before complete synchronization were investigated. We report three phenomena: (1) The emergence of long-time residence of trajectories besides one of the saddle foci; (2) The tendency that orbits of the two oscillators get close becomes faster with increasing the coupling strength; (3) The diffusion of two oscillator's phase difference is first enhanced and then suppressed. There are exact correspondences among these phenomena. The mechanism of these correspondences is explored. These phenomena uncover the route to synchronization of coupled chaotic oscillators.Comment: 3 pages, 5 figure

    What Powers Lyman alpha Blobs?

    Get PDF
    Lyman alpha blobs (LABs) are spatially extended lyman alpha nebulae seen at high redshift. The origin of Lyman alpha emission in the LABs is still unclear and under debate. To study their heating mechanism(s), we present Australia Telescope Compact Array (ATCA) observations of the 20 cm radio emission and Herschel PACS and SPIRE measurements of the far-infrared (FIR) emission towards the four LABs in the protocluster J2143-4423 at z=2.38. Among the four LABs, B6 and B7 are detected in the radio with fluxes of 67+/-17 microJy and 77+/-16 microJy, respectively, and B5 is marginally detected at 3 sigma (51+/-16 microJy). For all detected sources, their radio positions are consistent with the central positions of the LABs. B6 and B7 are obviously also detected in the FIR. By fitting the data with different templates, we obtained redshifts of 2.200.35+0.30^{+0.30}_{-0.35} for B6 and 2.200.30+0.45^{+0.45}_{-0.30} for B7 which are consistent with the redshift of the lyman alpha emission within uncertainties, indicating that both FIR sources are likely associated with the LABs. The associated FIR emission in B6 and B7 and high star formation rates strongly favor star formation in galaxies as an important powering source for the lyman alpha emission in both LABs. However, the other two, B1 and B5, are predominantly driven by the active galactic nuclei or other sources of energy still to be specified, but not mainly by star formation. In general, the LABs are powered by quite diverse sources of energy.Comment: 7 pages and 3 figurs, accepted by A&

    The simulation study on central porosity of 450 mm diameter steel electrode ingot

    Get PDF
    In this paper, cooling plan is optimized to solve the central porosity problem of 450 mm diameter steel electrode ingot. The central porosity of ingot in corresponding cooling plans is calculated by the finite element analysis software ProCAST. The results show that in the plan of independent riser and strengthened cooling in lower ingot part, the central porosity has been significantly reduced

    Temperature- and thickness-dependent elastic moduli of polymer thin films

    Get PDF
    The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T) and thickness (h)-dependent elastic moduli of polymer thin films Ef(T,h) is developed with verification by the reported experimental data on polystyrene (PS) thin films. For the PS thin films on a passivated substrate, Ef(T,h) decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*), at which thickness Ef(T,h) deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ

    Demixing in mesoscopic boson-fermion clouds inside cylindrical harmonic traps: quantum phase diagram and role of temperature

    Full text link
    We use a semiclassical three-fluid thermodynamic model to evaluate the phenomena of spatial demixing in mesoscopic clouds of fermionic and bosonic atoms at high dilution under harmonic confinement, assuming repulsive boson-boson and boson-fermion interactions and including account of a bosonic thermal cloud at finite temperature T. The finite system size allows three different regimes for the equilibrium density profiles at T=0: a fully mixed state, a partially mixed state in which the overlap between the boson and fermion clouds is decreasing, and a fully demixed state where the two clouds have zero overlap. We propose simple analytical rules for the two cross-overs between the three regimes as functions of the physical system parameters and support these rules by extensive numerical calculations. A universal ``phase diagram'' expressed in terms of simple scaling parameters is shown to be valid for the transition to the regime of full demixing, inside which we identify several exotic configurations for the two phase-separated clouds in addition to simple ones consisting of a core of bosons enveloped by fermions and "vice versa". With increasing temperature the main role of the growing thermal cloud of bosons is to transform some exotic configurations into more symmetric ones, until demixing is ultimately lost. For very high values of boson-fermion repulsive coupling we also report demixing between the fermions and the thermally excited bosons.Comment: 11 pages, 8 figure

    Global behavior of cosmological dynamics with interacting Veneziano ghost

    Full text link
    In this paper, we shall study the dynamical behavior of the universe accelerated by the so called Veneziano ghost dark energy component locally and globally by using the linearization and nullcline method developed in this paper. The energy density is generalized to be proportional to the Hawking temperature defined on the trapping horizon instead of Hubble horizon of the Friedmann-Robertson-Walker (FRW) universe. We also give a prediction of the fate of the universe and present the bifurcation phenomenon of the dynamical system of the universe. It seems that the universe could be dominated by dark energy at present in some region of the parameter space.Comment: 8 pages, 7 figures, accepted for publication in JHE

    Glucocorticoids, master modulators of the thymic catecholaminergic system?

    Get PDF
    There is evidence that the major mediators of stress, i.e., catecholamines and glucocorticoids, play an important role in modulating thymopoiesis and consequently immune responses. Furthermore, there are data suggesting that glucocorticoids influence catecholamine action. Therefore, to assess the putative relevance of glucocorticoid-catecholamine interplay in the modulation of thymopoiesis we analyzed thymocyte differentiation/maturation in non-adrenalectomized and andrenalectomized rats subjected to treatment with propranolol (0.4 mg.100 g body weight(-1).day(-1)) for 4 days. The effects of beta-adrenoceptor blockade on thymopoiesis in non-adrenalectomized rats differed not only quantitatively but also qualitatively from those in adrenalectomized rats. In adrenalectomized rats, besides a more efficient thymopoiesis [judged by a more pronounced increase in the relative proportion of the most mature single-positive TCR alpha beta(high) thymocytes as revealed by two-way ANOVA; for CD4(+)CD8(-)F (1,20) = 10.92, P lt 0.01; for CD4(-)CD8(+)F (1,20) = 7.47, P lt 0.05], a skewed thymocyte maturation towards the CD4(-)CD8(+) phenotype, and consequently a diminished CD4(+)CD8(-)/CD4(-)CD8(+) mature TCR alpha beta(high) thymocyte ratio (3.41 +/- 0.21 in non-adrenalectomized rats vs 2.90 +/- 0.31 in adrenalectomized rats, P lt 0.05) were found. Therefore, we assumed that catecholaminergic modulation of thymopoiesis exhibits a substantial degree of glucocorticoid-dependent plasticity. Given that glucocorticoids, apart from catecholamine synthesis, influence adrenoceptor expression, we also hypothesized that the lack of adrenal glucocorticoids affected not only beta-adrenoceptor- but also alpha-adrenoceptor-mediated modulation of thymopoiesis
    corecore