106 research outputs found
Changes in cocoa properties induced by the alkalization process: A review
[EN] Alkalization, also known as "Dutching," is an optional, but very useful, step taken in the production chain of cocoa to darken its color, modify its taste, and increase natural cocoa solubility. Over the years, various attempts have been made to design new and more effective alkalization methods. Moreover, different authors have attempted to elucidate the impact of alkalization on the physicochemical, nutritional, functional, microbiological, and sensory characteristics of alkalized cocoa. The aim of this review is to provide a clear guide about not only the conditions that can be applied to alkalize cocoa, but also the reported effects of alkalization on the nutritional, functional, microbiological, and sensory characteristics of cocoa. The first part of this review describes different cocoa alkalization systems and how they can be tuned to induce specific changes in cocoa properties. The second part is a holistic analysis of the effects of the alkalization process on different cocoa features, performed by emphasizing the biochemistry behind all these transformations.European Regional Development Fund, Grant/Award Number: Project RTC-2016-5241-2; Ministerio deEconomia y Competitividad, Grant/Award Number: Project RTC-2016-5241-2Valverde-Garcia, D.; PĂ©rez-Esteve, Ă.; Barat Baviera, JM. (2020). Changes in cocoa properties induced by the alkalization process: A review. Comprehensive Reviews in Food Science and Food Safety. 19(4):2200-2221. https://doi.org/10.1111/1541-4337.12581S22002221194Ilesanmi Adeyeye, E. (2016). Proximate, Mineral And Antinutrient Compositions Of Natural Cocoa Cake, Cocoa Liquor And Alkalized Cocoa Powders. Journal of Advanced Pharmaceutical Science And Technology, 1(3), 12-28. doi:10.14302/issn.2328-0182.japst-15-855Ajandouz, E. H., Tchiakpe, L. S., Ore, F. D., Benajiba, A., & Puigserver, A. (2001). Effects of pH on Caramelization and Maillard Reaction Kinetics in Fructose-Lysine Model Systems. Journal of Food Science, 66(7), 926-931. doi:10.1111/j.1365-2621.2001.tb08213.xAndres-Lacueva, C., Monagas, M., Khan, N., Izquierdo-Pulido, M., Urpi-Sarda, M., Permanyer, J., & Lamuela-RaventĂłs, R. M. (2008). Flavanol and Flavonol Contents of Cocoa Powder Products: Influence of the Manufacturing Process. Journal of Agricultural and Food Chemistry, 56(9), 3111-3117. doi:10.1021/jf0728754Andruszkiewicz, P. J., DâSouza, R. N., Altun, I., Corno, M., & Kuhnert, N. (2019). Thermally-induced formation of taste-active 2,5-diketopiperazines from short-chain peptide precursors in cocoa. Food Research International, 121, 217-228. doi:10.1016/j.foodres.2019.03.015Aprotosoaie, A. C., Luca, S. V., & Miron, A. (2015). Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73-91. doi:10.1111/1541-4337.12180Aremu, C. Y., Agiang, M. A., & Ayatse, J. O. I. (1995). Nutrient and antinutrient profiles of raw and fermented cocoa beans. Plant Foods for Human Nutrition, 48(3), 217-223. doi:10.1007/bf01088443Bandi J. P. Kubicek K. &Raboud P. B.(1984).Installation for solubilizing cocoa. US4438681A.Baigrie, B. D. (1994). Cocoa flavour. Understanding Natural Flavors, 268-282. doi:10.1007/978-1-4615-2143-3_17Bartella, L., Di Donna, L., Napoli, A., Siciliano, C., Sindona, G., & Mazzotti, F. (2019). A rapid method for the assay of methylxanthines alkaloids: Theobromine, theophylline and caffeine, in cocoa products and drugs by paper spray tandem mass spectrometry. Food Chemistry, 278, 261-266. doi:10.1016/j.foodchem.2018.11.072Bauermeister J.(1989).Process for making cacao powder by disagglomeration and cacao powder granulate by subsequent agglomeration. EP0310790A2.Beg, M. S., Ahmad, S., Jan, K., & Bashir, K. (2017). Status, supply chain and processing of cocoa - A review. Trends in Food Science & Technology, 66, 108-116. doi:10.1016/j.tifs.2017.06.007Biehl B.(1986).Cocoa fermentation and problem of acidity overâfermentation and low cocoa flavour.Selangor Malaysia: Incorporated Society of Planters.Serra BonvehĂ, J., & Ventura Coll, F. (2000). Evaluation of purine alkaloids and diketopiperazines contents in processed cocoa powder. European Food Research and Technology, 210(3), 189-195. doi:10.1007/pl00005510Borthwick, A. D., & Da Costa, N. C. (2015). 2,5-diketopiperazines in food and beverages: Taste and bioactivity. Critical Reviews in Food Science and Nutrition, 57(4), 718-742. doi:10.1080/10408398.2014.911142Chalin M. L.(1972).Method of dutching cocoa. US3868469A.Rainer Cremer, D. (2000). The reaction kinetics for the formation of Strecker aldehydes in low moisture model systems and in plant powders. Food Chemistry, 71(1), 37-43. doi:10.1016/s0308-8146(00)00122-9De Vuyst, L., & Weckx, S. (2016). The cocoa bean fermentation process: from ecosystem analysis to starter culture development. Journal of Applied Microbiology, 121(1), 5-17. doi:10.1111/jam.13045Del Rio, D., Costa, L. G., Lean, M. E. J., & Crozier, A. (2010). Polyphenols and health: What compounds are involved? Nutrition, Metabolism and Cardiovascular Diseases, 20(1), 1-6. doi:10.1016/j.numecd.2009.05.015DomĂnguez-RodrĂguez, G., Marina, M. L., & Plaza, M. (2017). Strategies for the extraction and analysis of non-extractable polyphenols from plants. Journal of Chromatography A, 1514, 1-15. doi:10.1016/j.chroma.2017.07.066El Gharras, H. (2009). Polyphenols: food sources, properties and applications - a review. International Journal of Food Science & Technology, 44(12), 2512-2518. doi:10.1111/j.1365-2621.2009.02077.xEllis L. D.(1990).Process for making dark cocoa. US5114730A.Ellis L. D. (1992).Process for making dark cocoa. US5114730A.Lu, F., Rodriguez-Garcia, J., Van Damme, I., Westwood, N. J., Shaw, L., Robinson, J. S., ⊠Charalampopoulos, D. (2018). Valorisation strategies for cocoa pod husk and its fractions. Current Opinion in Green and Sustainable Chemistry, 14, 80-88. doi:10.1016/j.cogsc.2018.07.007Franco, R., Oñatibia-Astibia, A., & MartĂnez-Pinilla, E. (2013). Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients, 5(10), 4159-4173. doi:10.3390/nu5104159Germann, D., Stark, T. D., & Hofmann, T. (2019). Formation and Characterization of Polyphenol-Derived Red Chromophores. Enhancing the Color of Processed Cocoa Powders: Part 1. Journal of Agricultural and Food Chemistry, 67(16), 4632-4642. doi:10.1021/acs.jafc.9b01049Germann, D., Stark, T. D., & Hofmann, T. (2019). Formation and Characterization of Polyphenol-Derived Red Chromophores. Enhancing the Color of Processed Cocoa Powders: Part 2. Journal of Agricultural and Food Chemistry, 67(16), 4643-4651. doi:10.1021/acs.jafc.9b01050Gobert, J., & Glomb, M. A. (2009). Degradation of Glucose: Reinvestigation of Reactive α-Dicarbonyl Compoundsâ . Journal of Agricultural and Food Chemistry, 57(18), 8591-8597. doi:10.1021/jf9019085Gu, L., House, S. E., Wu, X., Ou, B., & Prior, R. L. (2006). Procyanidin and Catechin Contents and Antioxidant Capacity of Cocoa and Chocolate Products. Journal of Agricultural and Food Chemistry, 54(11), 4057-4061. doi:10.1021/jf060360rGĂŒltekin-ĂzgĂŒven, M., BerktaĆ, I., & Ăzçelik, B. (2016). Change in stability of procyanidins, antioxidant capacity and in-vitro bioaccessibility during processing of cocoa powder from cocoa beans. LWT - Food Science and Technology, 72, 559-565. doi:10.1016/j.lwt.2016.04.065Hagerman, A. E. (1992). TanninâProtein Interactions. Phenolic Compounds in Food and Their Effects on Health I, 236-247. doi:10.1021/bk-1992-0506.ch019Holkar, C. R., Jadhav, A. J., & Pinjari, D. V. (2019). A critical review on the possible remediation of sediment in cocoa/coffee flavored milk. Trends in Food Science & Technology, 86, 199-208. doi:10.1016/j.tifs.2019.02.035Huang, Y., & Barringer, S. A. (2010). Alkylpyrazines and Other Volatiles in Cocoa Liquors at pH 5 to 8, by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). Journal of Food Science, 75(1), C121-C127. doi:10.1111/j.1750-3841.2009.01455.xHurst, W. J., Krake, S. H., Bergmeier, S. C., Payne, M. J., Miller, K. B., & Stuart, D. A. (2011). Impact of fermentation, drying, roasting and Dutch processing on flavan-3-ol stereochemistry in cacao beans and cocoa ingredients. Chemistry Central Journal, 5(1). doi:10.1186/1752-153x-5-53International Cocoa Organization(2017).Annual report 2014/2015 Retrieved fromhttps://www.icco.org/about-us/international-cocoa-agreements/cat_view/1-annual-report.html.Mazor JoliÄ, S., RadojÄiÄ RedovnikoviÄ, I., MarkoviÄ, K., Ivanec Ć ipuĆĄiÄ, Ä., & Delonga, K. (2011). Changes of phenolic compounds and antioxidant capacity in cocoa beans processing. International Journal of Food Science & Technology, 46(9), 1793-1800. doi:10.1111/j.1365-2621.2011.02670.xKofink, M., Papagiannopoulos, M., & Galensa, R. (2007). (-)-Catechin in Cocoa and Chocolate: Occurence and Analysis of an Atypical Flavan-3-ol Enantiomer. Molecules, 12(7), 1274-1288. doi:10.3390/12071274Kongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile â A review. Food Research International, 82, 44-52. doi:10.1016/j.foodres.2016.01.012Kopp G. M. Hennen J. C. Seyller M. &Brandstetter B.(2010).Process for producing high flavour cocoa. EP2241190A1.Kruszewski, B., & ObiedziĆski, M. W. (2020). Impact of Raw Materials and Production Processes on Furan and Acrylamide Contents in Dark Chocolate. Journal of Agricultural and Food Chemistry, 68(8), 2562-2569. doi:10.1021/acs.jafc.0c00412Lan, X., Liu, P., Xia, S., Jia, C., Mukunzi, D., Zhang, X., ⊠Xiao, Z. (2010). Temperature effect on the non-volatile compounds of Maillard reaction products derived from xyloseâsoybean peptide system: Further insights into thermal degradation and cross-linking. Food Chemistry, 120(4), 967-972. doi:10.1016/j.foodchem.2009.11.033Li, Y., Feng, Y., Zhu, S., Luo, C., Ma, J., & Zhong, F. (2012). The effect of alkalization on the bioactive and flavor related components in commercial cocoa powder. Journal of Food Composition and Analysis, 25(1), 17-23. doi:10.1016/j.jfca.2011.04.010Li, Y., Zhu, S., Feng, Y., Xu, F., Ma, J., & Zhong, F. (2013). Influence of alkalization treatment on the color quality and the total phenolic and anthocyanin contents in cocoa powder. Food Science and Biotechnology, 23(1), 59-63. doi:10.1007/s10068-014-0008-5Lima, L. J. R., Kamphuis, H. J., Nout, M. J. R., & Zwietering, M. H. (2011). Microbiota of cocoa powder with particular reference to aerobic thermoresistant spore-formers. Food Microbiology, 28(3), 573-582. doi:10.1016/j.fm.2010.11.011MALEYKI, M. J. A., & ISMAIL, A. (2010). ANTIOXIDANT PROPERTIES OF COCOA POWDER. Journal of Food Biochemistry, 34(1), 111-128. doi:10.1111/j.1745-4514.2009.00268.xMartĂn, M. Ă., & Ramos, S. (2017). Health beneficial effects of cocoa phenolic compounds: a mini-review. Current Opinion in Food Science, 14, 20-25. doi:10.1016/j.cofs.2016.12.002Martin, M. A., Goya, L., & Ramos, S. (2013). Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food and Chemical Toxicology, 56, 336-351. doi:10.1016/j.fct.2013.02.020MĂ©ndez-Albores, A., De JesĂșs-Flores, F., Castañeda-Roldan, E., ArĂĄmbula-Villa, G., & Moreno-MartıÌnez, E. (2004). The effect of toasting and boiling on the fate of B-aflatoxins during pinole preparation. Journal of Food Engineering, 65(4), 585-589. doi:10.1016/j.jfoodeng.2004.02.024Miller, K. B., Hurst, W. J., Payne, M. J., Stuart, D. A., Apgar, J., Sweigart, D. S., & Ou, B. (2008). Impact of Alkalization on the Antioxidant and Flavanol Content of Commercial Cocoa Powders. Journal of Agricultural and Food Chemistry, 56(18), 8527-8533. doi:10.1021/jf801670pOlam. (2017).The De Zaan cocoa manual. The Netherlands: Archer Daniels Midland Company BV.ODUNS, A. A., & LONGE, O. G. (1998). Nutritive value of hot water- or cocoa-pod ash solution-treated cocoa bean cake for broiler chicks. British Poultry Science, 39(4), 519-525. doi:10.1080/00071669888700Ofosu, I. W., Ankar-Brewoo, G. M., Lutterodt, H. E., Benefo, E. O., & Menyah, C. A. (2019). Estimated daily intake and risk of prevailing acrylamide content of alkalized roasted cocoa beans. Scientific African, 6, e00176. doi:10.1016/j.sciaf.2019.e00176Okiyama, D. C. G., Navarro, S. L. B., & Rodrigues, C. E. C. (2017). Cocoa shell and its compounds: Applications in the food industry. Trends in Food Science & Technology, 63, 103-112. doi:10.1016/j.tifs.2017.03.007Ortega, N., Romero, M.-P., MaciĂ , A., Reguant, J., AnglĂšs, N., MorellĂł, J.-R., & Motilva, M.-J. (2008). Obtention and Characterization of Phenolic Extracts from Different Cocoa Sources. Journal of Agricultural and Food Chemistry, 56(20), 9621-9627. doi:10.1021/jf8014415Pia, A. K. R., Pereira, A. P. M., Costa, R. A., Alvarenga, V. O., Freire, L., Carlin, F., & SantâAna, A. S. (2019). The fate of Bacillus cereus and Geobacillus stearothermophilus during alkalization of cocoa as affected by alkali concentration and use of pre-roasted nibs. Food Microbiology, 82, 99-106. doi:10.1016/j.fm.2019.01.009Quelal-VĂĄsconez, M. A., Lerma-GarcĂa, M. J., PĂ©rez-Esteve, Ă., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2020). Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy. LWT, 117, 108598. doi:10.1016/j.lwt.2019.108598QuelalâVĂĄsconez, M. A., LermaâGarcĂa, M. J., PĂ©rezâEsteve, Ă., Talens, P., & Barat, J. M. (2020). Roadmap of cocoa quality and authenticity control in the industry: A review of conventional and alternative methods. Comprehensive Reviews in Food Science and Food Safety, 19(2), 448-478. doi:10.1111/1541-4337.12522Razzaque, M. A., Saud, Z. A., Absar, N., Karim, M. R., & Hashinaga, F. (2000). Purification and Characterization of Polyphenoloxidase from Guava Infected with Fruit-rot Disease. Pakistan Journal of Biological Sciences, 3(3), 407-410. doi:10.3923/pjbs.2000.407.410Rimbach, G., Melchin, M., Moehring, J., & Wagner, A. (2009). Polyphenols from Cocoa and Vascular HealthâA Critical Review. International Journal of Molecular Sciences, 10(10), 4290-4309. doi:10.3390/ijms10104290RodrĂguez, P., PĂ©rez, E., & GuzmĂĄn, R. (2009). Effect of the types and concentrations of alkali on the color of cocoa liquor. Journal of the Science of Food and Agriculture, 89(7), 1186-1194. doi:10.1002/jsfa.3573Saltini, R., Akkerman, R., & Frosch, S. (2013). Optimizing chocolate production through traceability: A review of the influence of farming practices on cocoa bean quality. Food Control, 29(1), 167-187. doi:10.1016/j.foodcont.2012.05.054Sarmadi, B., Aminuddin, F., Hamid, M., Saari, N., Abdul-Hamid, A., & Ismail, A. (2012). Hypoglycemic effects of cocoa (Theobroma cacao L.) autolysates. Food Chemistry, 134(2), 905-911. doi:10.1016/j.foodchem.2012.02.202Sarmadi, B., Ismail, A., & Hamid, M. (2011). Antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of cocoa (Theobroma cacao L.) autolysates. Food Research International, 44(1), 290-296. doi:10.1016/j.foodres.2010.10.017Scalone, G. L. L., Textoris-Taube, K., De Meulenaer, B., De Kimpe, N., Wöstemeyer, J., & Voigt, J. (2019). Cocoa-specific flavor components and their peptide precursors. Food Research International, 123, 503-515. doi:10.1016/j.foodres.2019.05.019Schroder, T., Vanhanen, L., & Savage, G. P. (2011). Oxalate content in commercially produced cocoa and dark chocolate. Journal of Food Composition and Analysis, 24(7), 916-922. doi:10.1016/j.jfca.2011.03.008Shankar, M. U., Levitan, C. A., Prescott, J., & Spence, C. (2009). The Influence of Color and Label Information on Flavor Perception. Chemosensory Perception, 2(2), 53-58. doi:10.1007/s12078-009-9046-4Singh, P., Kesharwani, R. K., & Keservani, R. K. (2017). Antioxidants and Vitamins. Sustained Energy for Enhanced Human Functions and Activity, 385-407. doi:10.1016/b978-0-12-805413-0.00024-7Tanaka M. &Terauchi M.(1999).Cocoa powder rich in polyphenols process for producing the same and modified cocoa containing the same. US6485772B1.TaĆ, N. G., & Gökmen, V. (2016). Effect of alkalization on the Maillard reaction products formed in cocoa during roasting. Food Research International, 89, 930-936. doi:10.1016/j.foodres.2015.12.021Terink J. &Brandon M. J.(1981).Alkalized cocoa powders and foodstuffs containing such powders. US4435436A.Todorovic, V., Milenkovic, M., Vidovic, B., Todorovic, Z., & Sobajic, S. (2017). Correlation between Antimicrobial, Antioxidant Activity, and Polyphenols of Alkalized/Nonalkalized Cocoa Powders. Journal of Food Science, 82(4), 1020-1027. doi:10.1111/1750-3841.13672Tomas-BarberĂĄn, F. A., Cienfuegos-Jovellanos, E., MarĂn, A., Muguerza, B., Gil-Izquierdo, A., CerdĂĄ, B., ⊠EspĂn, J. C. (2007). A New Process To Develop a Cocoa Powder with Higher Flavonoid Monomer Content and Enhanced Bioavailability in Healthy Humans. Journal of Agricultural and Food Chemistry, 55(10), 3926-3935. doi:10.1021/jf070121jTotlani, V. M., & Peterson, D. G. (2005). Reactivity of Epicatechin in Aqueous Glycine and Glucose Maillard Reaction Models:â Quenching of C2, C3, and C4 Sugar Fragments. Journal of Agricultural and Food Chemistry, 53(10), 4130-4135. doi:10.1021/jf050044xTotlani, V. M., & Peterson, D. G. (2006). Influence of Epicatechin Reactions on the Mechanisms of Maillard Product Formation in Low Moisture Model Systems. Journal of Agricultural and Food Chemistry, 55(2), 414-420. doi:10.1021/jf0617521Trout R. B.(2001).Method for making dutched cocoa. EP1278428B1.Turcotte, A.-M., Scott, P. M., & Tague, B. (2013). Analysis of cocoa products for ochratoxin A and aflatoxins. Mycotoxin Research, 29(3), 193-201. doi:10.1007/s12550-013-0167-xWang, R., Wang, T., Zheng, Q., Hu, X., Zhang, Y., & Liao, X. (2012). Effects of high hydrostatic pressure on color of spinach purĂ©e and related properties. Journal of the Science of Food and Agriculture, 92(7), 1417-1423. doi:10.1002/jsfa.4719Wiant M. J. William R. Lynch W. R. &LeFreniere R. C.(1989).Method for producing deep red and black cocoa. US5009917A.Wissgott U.(1988).Process of alkalization of cocoa in aqueous phase. US4784866A.Wollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423-447. doi:10.1016/s0963-9969(00)00068-5Zhang, L., Xia, Y., & Peterson, D. G. (2014). Identification of Bitter Modulating Maillard-Catechin Reaction Products. Journal of Agricultural and Food Chemistry, 62(33), 8470-8477. doi:10.1021/jf502040eZhu, Q. Y., Holt, R. R., Lazarus, S. A., Ensunsa, J. L., Hammerstone, J. F., Schmitz, H. H., & Keen, C. L. (2002). Stability of the Flavan-3-ols Epicatechin and Catechin and Related Dimeric Procyanidins Derived from Cocoa. Journal of Agricultural and Food Chemistry, 50(6), 1700-1705. doi:10.1021/jf011228
GRAVITY: getting to the event horizon of Sgr A*
We present the second-generation VLTI instrument GRAVITY, which currently is
in the preliminary design phase. GRAVITY is specifically designed to observe
highly relativistic motions of matter close to the event horizon of Sgr A*, the
massive black hole at center of the Milky Way. We have identified the key
design features needed to achieve this goal and present the resulting
instrument concept. It includes an integrated optics, 4-telescope, dual feed
beam combiner operated in a cryogenic vessel; near infrared wavefront sensing
adaptive optics; fringe tracking on secondary sources within the field of view
of the VLTI and a novel metrology concept. Simulations show that the planned
design matches the scientific needs; in particular that 10 microarcsecond
astrometry is feasible for a source with a magnitude of K=15 like Sgr A*, given
the availability of suitable phase reference sources.Comment: 13 pages, 11 figures, to appear in the conference proceedings of SPIE
Astronomical Instrumentation, 23-28 June 2008, Marseille, Franc
Sensory Evaluation of Pralines Containing Different Honey Products
In this study, pralines manufactured by hand were evaluated sensorially. These pralines were obtained from dark chocolate containing 60% cocoa components, filled with Apis mellifera carnica Poll drone larvae, blossom honey and a blossom honey/pollen mixture from the protected region of Stara Planina-Eastern Serbia (a specific botanical region). The objectives of this study were investigations related to the use of sensory analysis for quality assessment of new functional products with potential benefits for human health, in particular of desserts based on dark chocolate pralines filled with different bee products characterized by a specific botanical and geographic origin, as well as of their storage properties and expected shelf life. Sensory quality (appearance, texture, odor and taste were evaluated by a group of experienced panelists immediately after the production (day 0), and then after 30, 90 and 180 days of storage under ambient conditions (temperature 18â20 °C). The results were statistically analyzed by the two-factorial analysis of variance (MANOVA) and with the LSD-test. It is possible to conclude that the storage time and composition of dark chocolate pralines containing different honey-bee products have statistically highly significant (p < 0.01) influence on the sensorially evaluated properties of pralines
ARGOS: the laser guide star system for the LBT
ARGOS is the Laser Guide Star adaptive optics system for the Large Binocular Telescope. Aiming for a wide field adaptive optics correction, ARGOS will equip both sides of LBT with a multi laser beacon system and corresponding wavefront sensors, driving LBT's adaptive secondary mirrors. Utilizing high power pulsed green lasers the artificial beacons are generated via Rayleigh scattering in earth's atmosphere. ARGOS will project a set of three guide stars above each of LBT's mirrors in a wide constellation. The returning scattered light, sensitive particular to the turbulence close to ground, is detected in a gated wavefront sensor system. Measuring and correcting the ground layers of the optical distortions enables ARGOS to achieve a correction over a very wide field of view. Taking advantage of this wide field correction, the science that can be done with the multi object spectrographs LUCIFER will be boosted by higher spatial resolution and strongly enhanced flux for spectroscopy. Apart from the wide field correction ARGOS delivers in its ground layer mode, we foresee a diffraction limited operation with a hybrid Sodium laser Rayleigh beacon combination.12 page(s
Verfahren und Vorrichtung zum periodischen Messen der Fliessgrenze von Dispersionen sowie deren Verwendung
WO 2008011996 A2 UPAB: 20080519 NOVELTY - The method involves moistening of a measuring body (1) iterative by the fluid material at a given, constant temperature. The fluid material partly discharges for a given discharge time, which is so measured that the measuring body obtains a constant weight. The yield point is determined by a remaining residual quantity at the measuring body. The measuring body is immersed in the fluid material and is flushed by the fluid material. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following: (1) a measuring device for periodic measuring of the yield point by fluid materials (2) use of the measuring device for continuous monitoring of fluid materials in a production line. USE - Temperature grade determining method of chocolate masses (Claimed). Can also be used in measuring, yield point of fluid materials in fluid material flow. ADVANTAGE - The measuring body is moistened iterative by the fluid material at a given, constant temperature, and the yield point is determined by a remaining residual quantity at the measuring body, and hence ensures a quasi-continuous regulation of a flow limit of dispersions in an easy and reproducible manner, and further covers a wide spectrum of materials, which are capable of flowing through the measuring system
Aromabildung durch Rösten und Backen
For many confectionery or bakery products there is a special reaction of flavor development by heat treatment. Roasted flavor components arise from the heat treatment while natural precursors (sugars, amino acids, proteins) are converted. Taste and aroma are influenced by the textural conditions, too. Chocolate is a typical example of an aroma based on flavor components and on textur and melting properties
Aromabildung in AbhÀngigkeit von Provenienz, Fermentation und thermischer Behandlung
Cocoa flavour is influenced by the country of origin of the cocoa beans and by fermentation, drying, roasting and further processing. During fermentation the main flavour precursors are developed: free amino acids, peptides and monosaccharides. The valuable flavour grade beans contain relatively high concentrations of linealool and other terpenoids which contribute to the flowery, tea-like aroma notes. Maillard reaction starts during the drying of fermented seeds and Amadori compounds are developed. The main flavour compounds result from the thermal treatment during the industrial drying and roasting processes. The flavour quality is influenced by the water content and the roasting conditions. Further processing steps as thin-layer-treatment or conching are needed to optimize cocoa flavour and develop chocolate aroma notes. (-z-
Schokolade. Forschung an einem technologisch anspruchsvollen GenuĂmittel
Chocolate technology means an interesting field of research. The roasting and conching processes have been improved to gain the optimal chocolate flavor. An optimal crystallization of chocolate masses is necessary to get heat stable, glossy and well tasting products. Several control methods have been developed to measure flavor quality of cocoa and nucleation tendency of cocoa butter. Continuous common research is needed to be able to solve futural problems and topics in the fields of cocoa processing and chocolate manufacturing
Biogene Amine in Kakao und Schokoladen
Biogenic amines in foods are of increasing interest because some of these compounds are implicated in vital functions: they work as neurotransmitters and increase blood-pressure and furthermore may be related to sexual activity or migraine attacks. They are developed from amino acids by enzymatic processes and, therefore, are to be found in fermented foods and several fruits. The concentration of 2-phenylethylamine (PEA) in cocoa products was estimated: There are 0-6 ppm in cocoa beans, depending of fermentation degree, 0-1.5 ppm in chocolates and 0-2 ppm in cocoa powders. These concentrations are comparable to those in red wine, and much lower than those found in special cheeses or sausages. In cocoa powder some alkaloids were identified for the first time which arise from the reaction of PEA with aromatic aldehydes during the alkalization process
Mehr Verpackung?
Today, in many cases materials for food packaging are minimized due to ecological considerations. The traditional packaging shielded food against mechanical stress, humidity, light influence, contaminants, insect attack, microorganisms, off-flavours. Reduced packaging cannot always guarantee the full protection. Therefore using new packaging materials, the minimum shelf life dating has to be checked. Producer, trade and consumer should accept shorter dating
- âŠ