477 research outputs found

    Correlations between isospin dynamics and Intermediate Mass Fragments emission time scales: a probe for the symmetry energy in asymmetric nuclear matter

    Get PDF
    We show new data from the 64^{64}Ni+124^{124}Sn and 58^{58}Ni+112^{112}Sn reactions studied in direct kinematics with the CHIMERA detector at INFN-LNS and compared with the reverse kinematics reactions at the same incident beam energy (35 A MeV). Analyzing the data with the method of relative velocity correlations, fragments coming from statistical decay of an excited projectile-like (PLF) or target-like (TLF) fragments are discriminated from the ones coming from dynamical emission in the early stages of the reaction. By comparing data of the reverse kinematics experiment with a stochastic mean field (SMF) + GEMINI calculations our results show that observables from neck fragmentation mechanism add valuable constraints on the density dependence of symmetry energy. An indication is found for a moderately stiff symmetry energy potential term of EOS.Comment: Talk given by E. De Filippo at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Simultaneous learning of instantaneous and time-delayed genetic interactions using novel information theoretic scoring technique

    Get PDF
    BACKGROUND: Understanding gene interactions is a fundamental question in systems biology. Currently, modeling of gene regulations using the Bayesian Network (BN) formalism assumes that genes interact either instantaneously or with a certain amount of time delay. However in reality, biological regulations, both instantaneous and time-delayed, occur simultaneously. A framework that can detect and model both these two types of interactions simultaneously would represent gene regulatory networks more accurately. RESULTS: In this paper, we introduce a framework based on the Bayesian Network (BN) formalism that can represent both instantaneous and time-delayed interactions between genes simultaneously. A novel scoring metric having firm mathematical underpinnings is also proposed that, unlike other recent methods, can score both interactions concurrently and takes into account the reality that multiple regulators can regulate a gene jointly, rather than in an isolated pair-wise manner. Further, a gene regulatory network (GRN) inference method employing an evolutionary search that makes use of the framework and the scoring metric is also presented. CONCLUSION: By taking into consideration the biological fact that both instantaneous and time-delayed regulations can occur among genes, our approach models gene interactions with greater accuracy. The proposed framework is efficient and can be used to infer gene networks having multiple orders of instantaneous and time-delayed regulations simultaneously. Experiments are carried out using three different synthetic networks (with three different mechanisms for generating synthetic data) as well as real life networks of Saccharomyces cerevisiae, E. coli and cyanobacteria gene expression data. The results show the effectiveness of our approach

    Interlayer Exchange Coupling Mediated by Valence Band Electrons

    Full text link
    The interlayer exchange coupling mediated by valence band electrons in all-semiconductor IV-VI magnetic/nonmagnetic superlattices is studied theoretically. A 3D tight-binding model, accounting for the band and magnetic structure of the constituent superlattice components is used to calculate the spin-dependent part of the total electronic energy. The antiferromagnetic coupling between ferromagnetic layers in EuS/PbS superlattices is obtained, in agreement with the experimental evidences. The results obtained for the coupling between antiferromagnetic layers in EuTe/PbTe superlattices are also presented.Comment: 8 pages, 6 figures, to be submitted to Phys.Rev.

    Projected Quasi-particle Perturbation theory

    Full text link
    The BCS and/or HFB theories are extended by treating the effect of four quasi-particle states perturbatively. The approach is tested on the pairing hamiltonian, showing that it combines the advantage of standard perturbation theory valid at low pairing strength and of non-perturbative approaches breaking particle number valid at higher pairing strength. Including the restoration of particle number, further improves the description of pairing correlation. In the presented test, the agreement between the exact solution and the combined perturbative + projection is almost perfect. The proposed method scales friendly when the number of particles increases and provides a simple alternative to other more complicated approaches

    Vascular cognitive impairment linked to brain endothelium inflammation in early stages of heart failure in mice

    Get PDF
    Background Although advanced heart failure ( HF ) is a clinically documented risk factor for vascular cognitive impairment, the occurrence and pathomechanisms of vascular cognitive impairment in early stages of HF are equivocal. Here, we characterize vascular cognitive impairment in the early stages of HF development and assess whether cerebral hypoperfusion or prothrombotic conditions are involved. Methods and Results Tgαq*44 mice with slowly developing isolated HF triggered by cardiomyocyte‐specific overexpression of G‐αq*44 protein were studied before the end‐stage HF , at the ages of 3, 6, and 10 months: before left ventricle dysfunction; at the stage of early left ventricle diastolic dysfunction (with preserved ejection fraction); and left ventricle diastolic/systolic dysfunction, respectively. In 6‐ to 10‐month‐old but not in 3‐month‐old Tgαq*44 mice, behavioral and cognitive impairment was identified with compromised blood‐brain barrier permeability, most significantly in brain cortex, that was associated with myelin sheet loss and changes in astrocytes and microglia. Brain endothelial cells displayed increased E‐selectin immunoreactivity, which was accompanied by increased amyloid‐β 1‐42 accumulation in piriform cortex and increased cortical oxidative stress (8‐ OH dG immunoreactivity). Resting cerebral blood flow measured by magnetic resonance imaging in vivo was preserved, but ex vivo NO ‐dependent cortical arteriole flow regulation was impaired. Platelet hyperreactivity was present in 3‐ to 10‐month‐old Tgαq*44 mice, but it was not associated with increased platelet‐dependent thrombogenicity. Conclusions We report for the first time that vascular cognitive impairment is already present in the early stage of HF development, even before left ventricle systolic dysfunction. The underlying pathomechanism, independent of brain hypoperfusion, involves preceding platelet hyperreactivity and brain endothelium inflammatory activation. </jats:sec

    Kondo effect in quantum dots coupled to ferromagnetic leads with noncollinear magnetizations: effects due to electron-phonon coupling

    Full text link
    Spin-polarized transport through a quantum dot strongly coupled to ferromagnetic electrodes with non-collinear magnetic moments is analyzed theoretically in terms of the non-equilibrium Green function formalism. Electrons in the dot are assumed to be coupled to a phonon bath. The influence of electron-phonon coupling on tunnelling current, linear and nonlinear conductance, and on tunnel magnetoresistance is studied in detail. Variation of the main Kondo peaks and phonon satellites with the angle between magnetic moments of the leads is analyzed.Comment: 19 pages, 6 figure

    Upper limit on the photon fraction in highest-energy cosmic rays from AGASA data

    Full text link
    A new method to derive an upper limit on photon primaries from small data sets of air showers is developed which accounts for shower properties varying with the primary energy and arrival direction. Applying this method to the highest-energy showers recorded by the AGASA experiment, an upper limit on the photon fraction of 51% (67%) at a confidence level of 90% (95%) for primary energies above 1.25 * 10^20 eV is set. This new limit on the photon fraction above the GZK cutoff energy constrains the Z-burst model of the origin of highest-energy cosmic rays.Comment: 4 pages, 3 figures. Analysis extended to account for primary energy resolution; conclusions unchanged. Accepted by Phys. Rev. Let

    Competition between dynamical and sequential reaction channels in ^{197}Au+^{197}Au collisions at a bombarding energy of 23A MeV

    Get PDF
    Competition between the two reaction channels: sequential breakup and neck fragmentation has been studied in peripheral and semi-peripheral collisions of the 197 Au+ 197 Au system at bombarding energy of 23A MeV. It was found that the emission of heavy (A < 50) neck-originating fragments occurs in about 22% of ternary breakup events, making this reaction channel highly competitive with the sequential breakup of the projectile- or target-like fragment (78% of events)
    corecore