204 research outputs found

    Impurity measurements in semiconductor materials using trace element accelerator mass spectrometry

    Get PDF
    Abstract Accelerator mass spectrometry (AMS) is commonly used to determine the abundance ratios of long-lived isotopes such as 10 B, 14 C, 36 Cl, 129 I, etc. to their stable counterparts at levels as low as 10 À16 . Secondary ion mass spectrometry (SIMS) is routinely used to determine impurity levels in materials by depth profiling techniques. Trace-element accelerator mass spectrometry (TEAMS) is a combination of AMS and SIMS, presently being used at the University of North Texas, for high-sensitivity (ppb) impurity analyses of stable isotopes in semiconductor materials. The molecular break-up characteristics of AMS are used with TEAMS to remove the molecular interferences present in SIMS. Measurements made with different substrate/impurity combinations demonstrate that TEAMS has higher sensitivity for many elements than other techniques such as SIMS and can assist with materials characterization issues. For example, measurements of implanted As in the presence of Ge in Ge x Si 1Àx /Si is difficult with SIMS because of molecular interferences from 74 GeH, 29 Si 30 Si 16 O, etc. With TEAMS, the molecular interferences are removed and higher sensitivities are obtained. Measured substrates include Si, SiGe, CoSi 2 , GaAs and GaN. Measured impurities include B, N, F, Mg, P, Cl, Cr, Fe, Ni, Co, Cu, Zn, Ge, As, Se, Mo, Sn and Sb. A number of measurements will be presented to illustrate the range and power of TEAMS.

    AMS facility at institute of physics, Bhubaneswar: inter-laboratory comparison of results

    Get PDF
    Radiocarbon dating has found wide applications in many areas of science like archaeology, geology, oceanography, palaeoseismology and palaeoclimatology. As a tracer, radiocarbon has applications in biology and medicine. Radiocarbon dating using Accelerator Mass Spectrometry (AMS) provides several advantages over the conventional decay counting method. The first AMS facility in India for radiocarbon dating has become operational at the Institute of Physics, Bhubaneswar. This note describes the operational features of this facility and inter-laboratory comparison of data

    A Multi-Level Approach of Audio-Steganography and Cryptography

    Get PDF
    ABSTRACT: After a rapid growth of cyber revolution, developing a secret communication is a major task of security that has gained increasing importance. Cryptography and steganography are the best methods for introducing hidden communication. Current technology allows steganography applications to hide any digital file inside of any other digital file. Due to the existence of their redundancies, audio and video files are much suitable for the purpose of hiding. Audio steganography is a challenging subject because human auditory system (HAS) is more sensitive than human visual system (HVS). It requires a text or audio secret message to embed within a carrier audio file. Several basic audio Steganographic methods like LSB method, parity coding etc., are in existence, but the proposed LSB with XORing method gives high security which undergoes cryptographic randomized algorithm too. By performing two level encryption, capacity and robustness will be increased

    Haemodynamic effects of the nitroxyl donor cimlanod (BMS-986231) in chronic heart failure: a randomized trial

    Get PDF
    Aims Nitroxyl provokes vasodilatation and inotropic and lusitropic effects in animals via post-translational modification of thiols. We aimed to compare effects of the nitroxyl donor cimlanod (BMS-986231) with those of nitroglycerin (NTG) or placebo on cardiac function in patients with chronic heart failure with reduced ejection fraction (HFrEF). Methods and results In a randomized, multicentre, double-blind, crossover trial, 45 patients with stable HFrEF were given a 5 h intravenous infusion of cimlanod, NTG, or placebo on separate days. Echocardiograms were done at the start and end of each infusion period and read in a core laboratory. The primary endpoint was stroke volume index derived from the left ventricular outflow tract at the end of each infusion period. Stroke volume index with placebo was 30 ± 7 mL/m2 and was lower with cimlanod (29 ± 9 mL/m2; P = 0.03) and NTG (28 ± 8 mL/m2; P = 0.02). Transmitral E-wave Doppler velocity on cimlanod or NTG was lower than on placebo and, consequently, E/e′ (P = 0.006) and E/A ratio (P = 0.003) were also lower. NTG had similar effects to cimlanod on these measurements. Blood pressure reduction was similar with cimlanod and NTG and greater than with placebo. Conclusion In patients with chronic HFrEF, the haemodynamic effects of cimlanod and NTG are similar. The effects of cimlanod may be explained by venodilatation and preload reduction without additional inotropic or lusitropic effects. Ongoing trials of cimlanod will further define its potential role in the treatment of heart failure

    Recovering Protein-Protein and Domain-Domain Interactions from Aggregation of IP-MS Proteomics of Coregulator Complexes

    Get PDF
    Coregulator proteins (CoRegs) are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP) followed by mass spectrometry (MS) applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/

    Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2

    Get PDF
    Publisher Copyright: © 2021 O'Toole Á et al.Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501Y-V2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected.Peer reviewe

    Trace elements in hemodialysis patients: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemodialysis patients are at risk for deficiency of essential trace elements and excess of toxic trace elements, both of which can affect health. We conducted a systematic review to summarize existing literature on trace element status in hemodialysis patients.</p> <p>Methods</p> <p>All studies which reported relevant data for chronic hemodialysis patients and a healthy control population were eligible, regardless of language or publication status. We included studies which measured at least one of the following elements in whole blood, serum, or plasma: antimony, arsenic, boron, cadmium, chromium, cobalt, copper, fluorine, iodine, lead, manganese, mercury, molybdenum, nickel, selenium, tellurium, thallium, vanadium, and zinc. We calculated differences between hemodialysis patients and controls using the differences in mean trace element level, divided by the pooled standard deviation.</p> <p>Results</p> <p>We identified 128 eligible studies. Available data suggested that levels of cadmium, chromium, copper, lead, and vanadium were higher and that levels of selenium, zinc and manganese were lower in hemodialysis patients, compared with controls. Pooled standard mean differences exceeded 0.8 standard deviation units (a large difference) higher than controls for cadmium, chromium, vanadium, and lower than controls for selenium, zinc, and manganese. No studies reported data on antimony, iodine, tellurium, and thallium concentrations.</p> <p>Conclusion</p> <p>Average blood levels of biologically important trace elements were substantially different in hemodialysis patients, compared with healthy controls. Since both deficiency and excess of trace elements are potentially harmful yet amenable to therapy, the hypothesis that trace element status influences the risk of adverse clinical outcomes is worthy of investigation.</p

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17

    Get PDF
    Background: Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods: We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings: Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40·0% (95% uncertainty interval [UI] 39·4–40·7) to 50·3% (50·0–50·5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46·3% (95% UI 46·1–46·5) in 2017, compared with 28·7% (28·5–29·0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88·6% (95% UI 87·2–89·7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664–711) of the 1830 (1797–1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76·1% (95% UI 71·6–80·7) of countries from 2000 to 2017, and in 53·9% (50·6–59·6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation: Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation
    corecore