104 research outputs found

    Protein structural change at the cytoplasmic surface as the cause of cooperativity in the bacteriorhodopsin photocycle

    Get PDF
    The effects of excitation light intensity on the kinetics of the bacteriorhodopsin photocycle were investigated. The earlier reported intensity-dependent changes at 410 and 570 nm are explained by parallel increases in two of the rate constants, for proton transfers to D96 from the Schiff base and from the cytoplasmic surface, without changes in the others, as the photoexcited fraction is increased. Thus, it appears that the pKa of D96 is raised by a cooperative effect within the purple membrane. This interpretation of the wild-type kinetics was confirmed by results with several mutant proteins, where the rates are well separated in time and a model-dependent analysis is unnecessary. Based on earlier results that demonstrated a structural change of the protein after deprotonation of the Schiff base that increases the area of the cytoplasmic surface, and the effects of high hydrostatic pressure and lowered water activity on the photocycle steps in question, we suggest that the pKa of D96 is raised by a lateral pressure that develops when other bacteriorhodopsin molecules are photoexcited within the two-dimensional lattice of the purple membrane. Expulsion of no more than a few water molecules bound near D96 by this pressure would account for the calculated increase of 0.6 units in the pKa

    Picosecond and Nanosecond Components in Bacteriorhodopsin Light-Induced Electric Response Signal

    Get PDF
    Numerous investigations on the primary events of the bacteriorhodopsin photocycle indicate that the first steps of the energy transformation process take place in the 500 fs-5 ps region. These processes are known to be followed by others in the μs and ms regions. Recent observations indicate also the existence of nanosecond intermediate(s). Here we are reporting on direct measurements of the light-induced electric response signal of purple membrane carried out in the ps and ns regions. The laser flash-induced electric response of dried oriented purple membrane samples were detected by an ultrafast sampling oscilloscope. The measured kinetic curves were analyzed by exponential fitting and by a simulation-optimization method taking into account the time characteristics of the measuring setup. This analysis revealed a two phase real charge separation process. The first phase (tau = 21±2 ps) coincides well with the overall bR-[unk] K transition. The second phase (tau = 6±0.5 ns) can be correlated with the nanosecond optical transitions reported by several workers, or may be an optically silent charge movement inside the protein moiety or on the surface of the membrane

    DAAM is required for thin filament formation and Sarcomerogenesis during muscle development in Drosophila.

    Get PDF
    During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin

    Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells

    Get PDF
    Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes

    DAAM is required for thin filament formation and Sarcomerogenesis during muscle development in Drosophila.

    Get PDF
    During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin

    Arrhenius parameters of the bacteriorhodopsin photocycle in dried oriented samples.

    Get PDF
    In dried oriented samples of purple membranes isolated from Halobacterium halobium the Arrhenius parameters of the photocycle showed an abrupt change at a water content of approximately 80 H2O molecules per bacteriorhodopsin molecule. This makes probable the existence of a water-dependent conformational change of the protein. This result underlines the importance of water in the proton-conduction mechanism inside the protein. The effect of the external electric potential on the rate constants of the photoelectric signals was also measured. The data demonstrate that the membrane potential affects the steps of the proton transport during the photocycle

    Photoelectric signals from dried oriented purple membranes of Halobacterium halobium.

    Get PDF
    In dried oriented samples of purple membrane isolated from Halobacterium halobium, the photoelectric activity decreases and the light adaptation vanishes when the water content of the sample is lowered. In the photocycle the first steps of the proton movement were accelerated with decreasing humidity, while the last steps of the photocycle could not be observed. From the analysis of the photoelectric signal we conclude that at low humidities the protons move forward in the L decay and return to their original place during M decay
    corecore