142 research outputs found

    Health Hazard from Gas Emissions in the Quaternary Volcanic Province of Latium (Italy)

    Get PDF
    The Quaternary Volcanic Province of Central Italy is characterized by zones with a huge endogenous degassing where frequent, sometimes lethal, accidents occur to people and animals. The emitted gas has a deep origin (volcanic or mantle) and is mainly composed by CO2 (up to 98%) and H2S (1-4%), which may reach dangerous concentrations both in open air and indoor. Here we present the results of a multiparametric geochemical study carried out in 2007-2009 in the Provinces of Rome and Viterbo (Latium), with the aim of assessing the health hazard of their main gas emission sites (GES). Three types of GES were investigated: 1. natural, open-air thermal pools, 2. within natural reserves, 3. near to inhabited zones. More than 15 GES have been studied, and here we will illustrate some of the cases with the highest hazard. Results are presented for the sites of Vejano and Mola di Oriolo (Viterbo), Caldara di Manziana, Tor Caldara and Solforata di Pomezia (Rome). Cava dei Selci is a well-known inhabited area of the volcanic complex of Colli Albani (Rome). In each site, multi-technique surveys have been carried out to estimate the total gas output and its concentration in air, by measuring: CO2 and H2S viscous and diffuse flux (the latter by accumulation chamber), CO2 and H2S concentration in air (by TDL profiles and punctual Draeger measurements); moreover, the chemical and isotopic composition of the gas was determined in each site. In all these zones, lethal air concentrations may be reached by both H2S and CO2, but more frequently by the first. Recommendations for risk reduction were given to Civil Protection authorities.Comission of Cities and Volcanoes (CaV) of the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI) Agencia Española de Cooperación Internacional para el Desarrollo (AECID), Gobierno de España Ministerio de Ciencia e Innovación (MICINN), Gobierno de España Unidad Militar de Emergencias (UME), Ministerio de Defensa, Gobierno de España Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI), Gobierno de Canarias Viceconsejería de Infraestructuras y Planificación, Gobierno de Canarias Consejería de Turismo, Gobierno de Canarias Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de Canarias Viceconsejería de Cultura y Deportes, Gobierno de Canarias Instituto Español de Oceanografía (IEO)Instituto Geológico y Minero de España (IGME)Instituto Geográfico Nacional (IGN)Academia Canaria de Seguridad Federación Canaria de Municipios (FECAM) Universidad de La Laguna (ULL)Instituto de Estudios Hispánicos de Canarias (IEHC) CajaCanariasPublishedPuerto de la Cruz, Tenerife, Spain1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive4.5. Studi sul degassamento naturale e sui gas petroliferiope

    Level of carbon dioxide diffuse degassing from the ground of Vesuvio: comparison between extensive surveys and inferences on the gas source

    Get PDF
    An extensive campaign of diffuse CO2 soil flux was carried out at the cone of Vesuvio in October 2006 with two main objectives: 1) to provide an estimation of CO2 diffusely discharged through the soils in the summit area and 2) to evidence those sectors of the volcano where structural and morphological conditions could favour the gas output. The survey consisted of 502 measurements of soil CO2 flux homogenously distributed over an area of about 1.8 km2. Results of this survey were compared with those obtained during a similar campaign carried out by Frondini et al. in 2000, from which we have taken and reinterpreted a subset of data belonging to the common investigated area. Graphical statistical analysis showed three overlapping populations in both surveys, evidencing the contribution of three different sources feeding the soil CO2 degassing process. The overall CO2 emission pattern of 2006 is coherent with that observed in 2000 and suggests that a value between 120 and 140 t/day of CO2 is representative of the total CO2 discharged by diffuse degassing from the summit area of Vesuvio. The preferential exhaling area lies in the inner crater, whose contribution resulted in 45.3% of the total CO2 emission in 2006 (with 62.8 t/day) and in 57.4% (with 70.3 t/day) in 2000, although its extension is only 13% of the investigated area. This highly emissive area correlated closely with the structural discontinuities of Vesuvio cone, mainly suggesting that the NW-SE trending tectonic line is actually an active fault leaking deep gas to the bottom of the crater. The drainage action of the fault could be enhanced by the “aspiration” effect of the volcanic conduit

    Hazardous gas emissions from the flanks of the quiescent Colli Albani volcano (Rome, Italy)

    Get PDF
    Gas hazard was evaluated in the three most important cold gas emission zones on the flanks of the quiescent Colli Albani volcano. These zones are located above structural highs of the buried carbonate basement which represents the main regional aquifer and the main reservoir for gas rising from depth. All extensional faults affecting the limestone reservoir represent leaking pathways along which gas rises to the surface and locally accumulates in shallow permeable horizons forming pressurized pockets that may produce gas blowout when reached by wells. The gas, mainly composed by CO2 (>90 vol.%), contains appreciable quantities of H2S (0.35-6 vol.%), and both represent a potentially high local hazard. Both gases are denser than air and accumulate near ground where they may reach hazardous concentrations, and actually lethal accidents frequently occur to animals watering at local ponds. In order to evaluate the rate of degassing and the related hazard, CO2 and H2S diffuse soil flux surveys have been repeatedly carried out by accumulation chamber. The viscous gas flux of some important discrete emissions has been also evaluated and the CO2 and H2S air concentration measured by portable devises and by Tunable Diode Laser profiles. The minimum potential lethal concentration of the two gases (250 ppm for H2S and 8 vol.% for CO2) is 320 times higher for CO2, whereas the CO2/H2S concentration ratio in the emitted natural gas is significantly lower (15-159). This explains why H2S reaches hazardous, even lethal, concentrations more frequently than CO2. A relevant hazard exists for both gases in the depressed zones (channels, excavations) particularly in the non-windy early hours of the day

    Environmental pre-exploitation monitoring of Torre Alfina geothermal system (Central Italy)

    Get PDF
    An interesting project of geothermal pilot plant, with no-gas emission in atmosphere, has been submitted for approval in the medium-enthalpy geothermal field of Torre Alfina. This prompted us to develop a geochemical and geophysical monitoring of the area with the aim of establishing a background information to reco-gnize anomalous gas emission, induced seismicity and subsidence, possibly related to the field exploitation. The exploration conducted by Enel in the years ‘70 - '80, including the drilling of 9 deep wells, has shown the existence of a medium-enthalpy geothermal field in the Torre Alfina zone, in central Italy. The area has been affected by a very complex geological evolution during the Neogene. It was affected by the Quaternary volcanism of the Tyrrhenian margin which, reached its climax between 0.6 and 0.3 Ma. The present stress field around Quaternary volcanoes of central Italy has a NE to ENE direction of extension, in agreement with the alignment of Quaternary volcanoes and earthquake fault plane solutions, with T axes preferentially oriented between NE and ENE.PublishedPrague, Czech Republic, June 22 to July 2, 20156T. Sismicità indotta e caratterizzazione sismica dei sistemi naturaliope

    Environmental pre-exploitation monitoring of Torre Alfina geothermal system (Central Italy)

    Get PDF
    An interesting project of geothermal pilot plant, with no-gas emission in atmosphere, has been submitted for approval in the medium-enthalpy geothermal field of Torre Alfina. This prompted us to develop a geochemical and geophysical monitoring of the area with the aim of establishing a background information to reco-gnize anomalous gas emission, induced seismicity and subsidence, possibly related to the field exploitation. The exploration conducted by Enel in the years ‘70 - '80, including the drilling of 9 deep wells, has shown the existence of a medium-enthalpy geothermal field in the Torre Alfina zone, in central Italy. The area has been affected by a very complex geological evolution during the Neogene. It was affected by the Quaternary volcanism of the Tyrrhenian margin which, reached its climax between 0.6 and 0.3 Ma. The present stress field around Quaternary volcanoes of central Italy has a NE to ENE direction of extension, in agreement with the alignment of Quaternary volcanoes and earthquake fault plane solutions, with T axes preferentially oriented between NE and ENE

    The STAR Silicon Strip Detector (SSD)

    Full text link
    The STAR Silicon Strip Detector (SSD) completes the three layers of the Silicon Vertex Tracker (SVT) to make an inner tracking system located inside the Time Projection Chamber (TPC). This additional fourth layer provides two dimensional hit position and energy loss measurements for charged particles, improving the extrapolation of TPC tracks through SVT hits. To match the high multiplicity of central Au+Au collisions at RHIC the double sided silicon strip technology was chosen which makes the SSD a half million channels detector. Dedicated electronics have been designed for both readout and control. Also a novel technique of bonding, the Tape Automated Bonding (TAB), was used to fullfill the large number of bounds to be done. All aspects of the SSD are shortly described here and test performances of produced detection modules as well as simulated results on hit reconstruction are given.Comment: 11 pages, 8 figures, 1 tabl

    Detector and Front-end electronics for ALICE and STAR silicon strip layers

    Get PDF
    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented

    TAB Bonded SSD Module for the STAR and ALICE Trackers

    Get PDF
    Presentation made at LEB99, 20-24 September 1999A novel compact detector module has been produced by the "IReS"-"Subatech"-"Thomson-CSF-Detexis" collaboration. It includes a Double-Sided (DS) Silicon Strip Detector (SSD) and the related Front End Electronics (FEE) located on two hybrids, one for the N side and one for the P side. Bumpless Tape Automated Bonding (TAB) is used to connect the detector to the hybrids by means of microcables with neither wirebonding nor pitch adapter. Each of the six dedicated ALICE128C FE chip [1], located on the hybrid, is TABed on identical single layer microcables, which connect its inputs to the DS SSD and its outputs to the hybrid [2]. These microcables are bent in order to fold over the two hybrids on the DS SSD. This module meets the specifications of two experiments, ALICE (A Large Ion Collider Experiment) on the LHC accelerator at CERN [3] and STAR (Solenoid Tracker At Rhic) on the RHIC accelerator at BNL (Brookhaven National Laboratory)[4]. It can be used with air cooling (STAR) as well as with water cooling (ALICE)[5]. This mechanically self-consistent FE module has been tested on the SPS beam at CERN. Preliminary results are presented

    Production test of microstrip detector and electronic frontend modules for the STAR and ALICE trackers

    Get PDF
    We revisit Shin et al.’s leakage-resilient password-based authenticated key establishment protocol (LR-AKEP) and the security model used to prove the security of LR-AKEP. By refining the Leak oracle in the security model, we show that LR-AKE (1) can, in fact, achieve a stronger notion of leakage-resilience than initially claimed and (2) also achieve an additional feature of traceability, not previously mentioned
    corecore