292 research outputs found
Hypothalamically-Induced Insulin Release and its Potentiation During Oral and Intravenous Glucose Loads
Male Wistar rats were provided with bilateral cannulas in the lateral hypothalamic area (LHA) and cannulas in the left and right jugular vein. Freely moving rats provided in this way with cannulas were infused with transmitters in the LHA and with various substances in the blood circulation during simultaneous sampling of blood without disturbing the animals. Infusion of norepinephrine (NE) in the LHA resulted in increased insulin levels while plasma glucagon and blood glucose were nearly not affected. This LHA mediated insulin release was suppressed by atropine injection in the blood circulation suggesting a vagal contribution to the observed phenomenon. Administration of either an oral or i.v. glucose load during noradrenergic stimulation of the LHA elicited an exaggerated insulin response when compared to their controls. This LHA potentiated insulin response during an oral and i.v. glucose load could be suppressed by atropinization of the rats. It is concluded that meal-related stimuli are relayed to the NE-stimulated area of the LHA and that these stimuli modulate the output from this area of the LHA that is concerned with the release of insulin.
The temporal organization of ingestive behaviour and its interaction with regulation of energy balance
Body weight of man and animals is under homeostatic control mediated by the adjustment of food intake It is discussed in this review that besides signals reporting energy deficits, optimized programs of body clocks take part in feeding behaviour as well Circadian light- and food-entrainable clocks determine anticipatory adaptive behavioural and physiological mechanisms, promoting or inhibiting food intake In fact these clocks form the constraints within which the homeostatic regulation of feeding behaviour is operating Therefore, a strong interaction between circadian and homeostatic regulation must occur. In this homeostatic control, a wide variety of regulatory negative feedback mechanisms, or satiety signals, play a dominant role. In this respect several gut hormones and body temperature function as 'short-term' satiety factors and determine meal sizes and intermeal intervals Leptin, secreted by fat cells in proportion to the size of adipose tissue mass, is probably an important determinant of the 'long-term' regulation of feeding behaviour by setting the motivational background level for feeding behaviour. Thus, initiation or termination of meals at any particular point in time, depends on the resultant of all satiety signals and on constraints imposed by circadian light- and food-entrainable oscillators. (C) 2002 Elsevier Science Ltd. All rights reserved
EXERCISE-INDUCED SYMPATHETIC FFA MOBILIZATION IN VMH-LESIONED RATS IS NORMALIZED BY FASTING
This study investigates whether reduced sympathetic responses during physical exercise in ventromedial hypothalamus (VMH)-lesioned obese rats are the direct result of damage to hypothalamic circuits or a secondary effect of the altered metabolism in obesity. Obese, VMH-lesioned rats and lean controls were deprived of food for 48 h and submitted to 15 min of swimming. Food-deprived lean and obese rats displayed increased free fatty acid mobilization and utilization, whereas blood glucose concentrations were decreased. Basal plasma insulin levels were reduced by fasting in both groups, when compared with the ad libitum situation, but remained higher in the obese animals. Fasting augmented the norepinephrine response of the obese rats, resulting in equal profiles in lean and obese animals. These results indicate that VMH-lesioned animals are able to increase the sympathetic activation of adipose tissue during exercise to overcome an energy deficiency. Therefore, the function of the VMH in the regulation of the sympathetic nervous system controlling metabolism can be taken over by redundant mechanisms. The reduced sympathetic activity in ad libitum fed VMH-lesioned animals is therefore likely to be the result of the altered metabolism
Basis set effects on the hyperpolarizability of CHCl_3: Gaussian-type orbitals, numerical basis sets and real-space grids
Calculations of the hyperpolarizability are typically much more difficult to
converge with basis set size than the linear polarizability. In order to
understand these convergence issues and hence obtain accurate ab initio values,
we compare calculations of the static hyperpolarizability of the gas-phase
chloroform molecule (CHCl_3) using three different kinds of basis sets:
Gaussian-type orbitals, numerical basis sets, and real-space grids. Although
all of these methods can yield similar results, surprisingly large, diffuse
basis sets are needed to achieve convergence to comparable values. These
results are interpreted in terms of local polarizability and
hyperpolarizability densities. We find that the hyperpolarizability is very
sensitive to the molecular structure, and we also assess the significance of
vibrational contributions and frequency dispersion
Response functions in TDDFT: Concepts and implementation
Many physical properties of interest about solids and molecules can be considered as the reaction of the system to an external perturbation, and can be expressed in terms of response functions, in time or frequency and in real or reciprocal space. Response functions in time-dependent densityfunctional
theory (TDDFT) can be calculated by a variety of methods. Timepropagation is a non-perturbative approach in the time domain, whose static analogue is the method of finite differences. Other approaches are perturbative and are formulated in the frequency domain. The Sternheimer equation solves for the variation of the wavefunctions, the Dyson equation is used to
solve directly for response functions, and the Casida equation solves for the excited states via an expansion in an electron-hole basis. These techniques can be used to study a range of different response functions, including electric, magnetic, structural, and k·p perturbations. In this chapter, we give an overview of the basic concepts behind response functions and the methods
that can be employed to efficiently compute the response properties within TDDFT and the physical quantities that can be studied.DAS acknowledges support from the US National Science Foundation, Grant No. DMR10-1006184 and a graduate fellowship. LL and MALM acknowledges support from the French ANR (ANR-08-EXC8-008-01). AR acknowledges funding by the European Research Council Advanced Grant DYNamo (ERC-2010-AdG -Proposal No. 267374) Spanish MICINN (FIS2010-21282-C02-01), ACI-promociona project (ACI2009-1036), “Grupos Consolidados UPV/EHU del Gobierno Vasco” (IT-319-07), and the European Community through e-I3 ETSF project (Contract No. 211956). SGL was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and
Engineering Division, U.S. Department of Energy under Contract No. DEAC02-05CH11231.Peer reviewe
Invisible Events with Radiative Photons at LEP
A study of the radiative neutrino counting reaction at LEP1 and LEP2 energies is presented. An approximate expression
for the spectrum of the observed photon is derived within the framework of the
-dependent structure function approach. This is compared with an exact
expression and found in agreement within the foreseen experimental accuracy.
This model describing single-photon radiation can be applied to the more
general case of initial-state single-photon emission accompanying invisible
final-state events. Higher-order QED corrections due to undetected
initial-state radiation are also included. The implementation in a Monte Carlo
event generator is briefly described.Comment: 10 pages, LaTeX, 7 figures available via anonymous ftp at:
ftp://cobra1.pv.infn.it/pub/phot/, files fig#n.ps with #=1,...,
Overfeeding, Autonomic Regulation and Metabolic Consequences
The autonomic nervous system plays an important role in the regulation of body processes in health and disease. Overfeeding and obesity (a disproportional increase of the fat mass of the body) are often accompanied by alterations in both sympathetic and parasympathetic autonomic functions. The overfeeding-induced changes in autonomic outflow occur with typical symptoms such as adiposity and hyperinsulinemia. There might be a causal relationship between autonomic disturbances and the consequences of overfeeding and obesity. Therefore studies were designed to investigate autonomic functioning in experimentally and genetically hyperphagic rats. Special emphasis was given to the processes that are involved in the regulation of peripheral energy substrate homeostasis. The data revealed that overfeeding is accompanied by increased parasympathetic outflow. Typical indices of vagal activity (such as the cephalic insulin release during food ingestion) were increased in all our rat models for hyperphagia. Overfeeding was also accompanied by increased sympathetic tone, reflected by enhanced baseline plasma norepinephrine (NE) levels in both VMH-lesioned animals and rats rendered obese by hyperalimentation. Plasma levels of NE during exercise were, however, reduced in these two groups of animals. This diminished increase in the exercise-induced NE outflow could be normalized by prior food deprivation. It was concluded from these experiments that overfeeding is associated with increased parasympathetic and sympathetic tone. In models for hyperphagia that display a continuously elevated nutrient intake such as the VMH-lesioned and the overfed rat, this increased sympathetic tone was accompanied by a diminished NE response to exercise. This attenuated outflow of NE was directly related to the size of the fat reserves, indicating that the feedback mechanism from the periphery to the central nervous system is altered in the overfed state.
Recommended from our members
Time-Dependent Density-Functional Theory in Massively Parallel Computer Architectures: The Octopus Project
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn–Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn–Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.Chemistry and Chemical Biolog
- …
