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sité Claude Bernard Lyon 1 et CNRS, 43 boulevard du 11 novembre 1918,
69622 Villeurbanne Cedex, France
miguel.marques@tddft.org

Steven G. Louie

Department of Physics, University of California, 366 LeConte Hall MC 7300,
Berkeley, CA 94720-7300, USA and Materials Sciences Division, Lawrence
Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
sglouie@berkeley.edu

Many physical properties of interest about solids and molecules can be
considered as the reaction of the system to an external perturbation, and
can be expressed in terms of response functions, in time or frequency and
in real or reciprocal space. Response functions in time-dependent density-
functional theory (TDDFT) can be calculated by a variety of methods. Time-
propagation is a non-perturbative approach in the time domain, whose static
analogue is the method of finite differences. Other approaches are perturba-
tive and are formulated in the frequency domain. The Sternheimer equation
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solves for the variation of the wavefunctions, the Dyson equation is used to
solve directly for response functions, and the Casida equation solves for the
excited states via an expansion in an electron-hole basis. These techniques
can be used to study a range of different response functions, including elec-
tric, magnetic, structural, and k ·p perturbations. In this chapter, we give an
overview of the basic concepts behind response functions and the methods
that can be employed to efficiently compute the response properties within
TDDFT and the physical quantities that can be studied.

1.1 Response function

In this section, we will: i) show how a response function maps an external
field to a physical observable, ii) discuss how a specific response function is
connected to a specific physical property, iii) link the fully interacting many-
body density response function with the Kohn-Sham (KS) density response
function, and iv) describe how the different orders of response functions form
a hierarchy.

In spectroscopic experiments, an external field F (r, t) is applied to a
sample. The sample, which is a fully interacting many-electron system from
the theoretical point of view, responds to the external field. Then the response
can measured for some physical observable P:

∆P = ∆PF [F ]. (1.1)

In general, the dependence of the functional ∆PF [F ] on F is very complex,
as it must reproduce the response for a field of any strength and shape.
However, if the external field is weak, the response can be expanded as a
power series with respect to the field strength [Bernard 1959, Peterson 1967].
The first-order response, also called the linear response of the observable,

δP(1)(r; t) =

∫

dt′
∫

d3r′ χ
(1)
P←F (r, r

′; t− t′)δF (1)(r′; t′) (1.2)

is a convolution of χ
(1)
P←F (r, r

′; t − t′), the linear response function, and
δF (1)(r′; t′), the field expanded to first order in the field strength. The lin-
ear response function is nonlocal in space and in time, but the above time
convolution simplifies to a product in frequency space:

δP(1)(r;ω) = χ
(1)
P←F (r, r

′;ω)δF (1)(r′;ω). (1.3)

The linear response function χ
(1)
P←F (r, r

′;ω) depends only on a single fre-
quency ω, which is a consequence of the homogeneity of time.

At every order in the field strength, each observable/field pair has its
own response function that is connected to a specific physical property. For
example, the first-order response of the dipole moment to a dipole electric
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field in first order is the polarizability: α = ∂µ
∂E , the second-order response of

the same pair provides the hyperpolarizability, and the first-order response
of the magnetic moment to a homogeneous magnetic field is the magnetic
susceptibility.

1.1.1 Linear density response

Perhaps the most important response function, from the TDDFT point of

view, is the linear density response function χ
(1)
n←vext(r, r

′, t− t′), which gives
the linear density response δn(1)(r, t) to an external scalar potential δvext(r

′, t′):

δn(r, t) =

∫

dt′
∫

d3r′ χ(r, r′, t− t′)δvext(r
′, t′), (1.4)

where χ(r, r′, t− t′) is just a shorthand notation for χ
(1)
n←vext(r, r

′, t− t′). If
the density response function χ(r, r′, t − t′) is solved explicitly, it can then
be used to calculate the first-order response of all properties derivable from
the density with respect to any scalar field (e.g., polarizability, magnetic
susceptibility).

The fully interacting many-body response function can be obtained from
the corresponding Kohn-Sham system [Gross 1985, Petersilka 1996]. The
Kohn-Sham system describes a non-interacting system of the electrons sub-
ject to an external potential vKS(r, t), which is the effective Kohn-Sham po-
tential. Therefore, the so-called linear Kohn-Sham (density) response function
measures how the density changes upon linear variation of the Kohn-Sham
potential vKS(r, t):

δn(r, t) =

∫

dt′
∫

d3r′ χKS(r, r
′, t− t′)δvKS(r

′, t′). (1.5)

Note that, by virtue of the KS construction, the variation of the density
δn(r, t) is equal to the fully interacting system. In addition to the external
potential vext(r, t), the effective Kohn-Sham potential has contributions from
the Hartree and the exchange-correlation potentials:

δvKS(r
′, t′) = δvext(r

′, t′) + δvH[n](r
′, t′) + δvxc[n](r

′, t′), (1.6)

where

δvH [n](r′, t′) =

∫

dt′′
∫

d3r′′
δ(t′ − t′′)

|r′ − r′′|
δn(r′′, t′′). (1.7)

To calculate the variation of the exchange-correlation (XC) potential, one
simply employs the chain-rule for functional derivatives:

δvxc[n](r
′, t′) =

∫

d3r ′′
∫

t′′fxc[nGS](r
′, r′′, t− t′)δn(r′′, t′′). (1.8)
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The exchange-correlation kernel

fxc[nGS](r
′, r′′, t− t′) =

δvxc[n](r
′, t′)

δn(r′′, t′′)

∣

∣

∣

∣

n=nGS

(1.9)

is the functional derivative of the exchange-correlation potential with respect
to the density at the ground-state density nGS. Note that the exchange-
correlation kernel fxc[nGS](r

′, r′′, t − t′) is a functional of the ground-state
density and can be evaluated before any response calculation.

For the same external potential vext(r, t), the fully interacting and the
Kohn-Sham density responses must be the same. Therefore, we can set the
right-hand-side of Eq. (1.4) equal to the right-hand-side of Eq. (1.5), and use
Eq. (1.4) once more to replace δn in Eq. (1.8):

∫

dt′
∫

d3r′ χ(r, r′, t− t′)δvext(r
′, t′) =

∫

dt′
∫

d3r′ χKS(r, r
′, t− t′)δvext(r

′, t′) +

∫

dt′
∫

d3r′ χKS(r, r
′, t− t′)

×

∫

dt′′
∫

d3r′′
[

δ(t′ − t′′)

|r′ − r′′|
+ fxc[nGS](r

′, r′′, t′ − t′′)

]

×

∫

dt′′′
∫

d3r′′′ χ(r′′, r′′′, t′′ − t′′′)δvext(r
′′′, t′′′). (1.10)

As the density response function is an intrinsic property of the system, it
cannot depend on the detailed form of the external potential. The terms
multiplying the external potential vext(r, t) must be point-wise equal, from
which we obtain a Dyson-like equation for the density response function,
which reads in frequency space:

χ(r, r′, ω) = χKS(r, r
′, ω) +

∫

d3r ′′
∫

d3r ′′′χKS(r, r
′′, ω)

×

[

1

|r′′ − r′′′|
+ fxc[nGS](r

′′, r′′′, ω)

]

χ(r′′′, r′, ω). (1.11)

The Kohn-Sham density response function χKS(r, r, ω) is straightforward to
obtain from first-order perturbation theory and has poles at the Kohn-Sham
energy differences:

χKS(r, r
′, ω) =

lim
η→0+

∑

a,i

(ni − na)

[

ϕ∗i (r)ϕa(r)ϕi(r
′)ϕ∗a(r

′)

ω − (εa − εi) + iη
−
ϕi(r)ϕ

∗
a(r)ϕa(r

′)ϕ∗i (r
′)

ω − (εi − εa) + iη

]

,

(1.12)
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where ϕi(r) and ϕa(r) are occupied and unoccupied KS orbitals, respectively,
and εi and εa are the corresponding KS eigenvalues.1 The equation (1.11)
can be formally written as

χ = (1− χKSfHxc)
−1
χKS, (1.13)

where all terms on the right-hand-side are known from a ground-state Kohn-
Sham calculation. This equation can be used directly to calculate the fully
interacting density response function from a Kohn-Sham system [Hybertsen
1987].

Before introducing practical methods for calculating TDDFT response in
section 1.2, we will briefly discuss higher-order responses.

1.1.2 Higher-order density response

In linear response, a system interacts only once with the external field and
only with the field component which is first-order with respect to the field-
strength parameter. For example, the magnetic field changes the kinetic-
energy operator in the following way:

1

2

(

p̂+
λ

c
Â

)2

=
1

2
p̂2 +

λ

2c
p̂ · Â+

λ

2c
Â · p̂+

λ2

2c2
Â2, (1.14)

but only the terms p̂ · Â and Â · p̂ contribute to the linear response, because
Â2 term is second order with respect to the field strength parameter λ.

In second-order response, a system interacts twice with the linear com-
ponent of the external field, but in addition, it also interacts once with the

quadratic component of the external field δv
(2)
ext (e.g., Â2) if it exists. The

second-order density response equation reads

δn(2)(r, t) =

1

2

∫

dt′
∫

dt′′
∫

d3r′
∫

d3r′′ χ(2)(r, t, r′, t′, r′′, t′′)δv
(1)
ext(r

′, t′)δv
(1)
ext(r

′′, t′′)

+

∫

dt′
∫

d3r′ χ(1)(r, t, r′, t′)δv
(2)
ext(r

′, t′). (1.15)

or in frequency space

δn(2)(r, ω) =
1

2

∫

dω′
∫

dω′′
∫

d3r′
∫

d3r′′ δ(ω − (ω′ + ω′′))

× χ(2)(r, r′, r′′, ω, ω′, ω′′)δv
(1)
ext(r

′, ω′)δv
(1)
ext(r

′′, ω′′)

+

∫

d3r ′χ(1)(r, t, r′, ω)δv
(2)
ext(r

′, ω), (1.16)

1 This is the causal KS response function. The time-ordered KS response function
would have −iη in the second term.
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where δ(ω − (ω′ + ω′′)) comes from the conservation of energy. The second-
order response function χ(2)(r, r′, r′′, ω, ω′, ω′′) mixes two frequencies (which
can be different, ω1 and ω2, or the same, ω1 = ±ω2) to a new frequency. For
example, if the field is monochromatic having only frequency ω1, the second-
order response generates second harmonics at frequency 2ω1, and optical
rectification at frequency ω = ω1 − ω1 = 0.

The second-order Kohn-Sham response is fairly straightforward to obtain
[Senatore 1987], and it reads

δn(2)(r, t) =

1

2

∫

dt′
∫

dt′′
∫

d3r′
∫

d3r′′ χ
(2)
KS(r, t, r

′, t′, r′′, t′′)δv
(1)
ext(r

′, t′)δv
(1)
ext(r

′′, t′′)

+

∫

dt′
∫

d3r′ χ
(1)
KS(r, t, r

′, t′)δv
(2)
ext(r

′, t′).

+
1

2

∫

dt′
∫

dt′′
∫

dt′′′
∫

d3r′
∫

d3r′′
∫

d3r′′′ χ
(1)
KS(r, t, r

′, t′)

×Mxc(r
′, t′, r′′, t′′, r′′′, t′′′)δn(1)(r′′, t′′)δn(1)(r′′′, t′′′)

+

∫

dt ′
∫

dt ′′
∫

d3r ′
∫

d3r ′′χ
(1)
KS(r, t, r

′, t′)

×

(

δ(t′ − t′′)

|r′ − r′′|
+ fxc(r

′, t′, r′′, t′′)

)

δn(2)(r′′, t′′), (1.17)

where

Mxc(r
′, t′, r′′, t′′, r′′′, t′′′) =

δ2vxc(r
′, t′)

δn(r′′, t′′)δn(r′′′, t′′′)

∣

∣

∣

n=nGS

. (1.18)

If χ(1) is already solved for, the 2nd-order response equation can then be
obtained by combining Eqs. (1.4), (1.17) and (1.15).

Higher-order responses are also straightforward to construct but become
quickly cumbersome. The response equations form a hierarchic structure
where the ith-order response requires the (i−1)th- and lower-order responses.
Note that all functional derivatives of the XC potentials are with respect to
the ground-state density.

1.2 Methods for calculating response functions

In this section, we will briefly describe three different methods to calculate
response from TDDFT: i) time-propagation, ii) Sternheimer, and iii) Casida
method. The time-propagation method [Yabana 1999] simply propagates a
system under a given external field. The density response is obtained directly
as the difference between the time-dependent density and the ground-state
state density. As the method is nonperturbative, all orders of response are
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included in the calculation, and therefore, specific orders must be numerically
extracted. The Sternheimer method [Sternheimer 1954, Baroni 1987b, Gonze
1995b, Andrade 2007] solves for a specific order of the response for a specific
field in frequency space (i.e, it is a perturbative approach). The Sternheimer
equations form a hierarchic structure, where higher-order responses can be
calculated from lower-order responses. The Casida method [Casida 1995],
instead of finding the response, finds the poles and residues of the first-order
response function, which corresponds to finding the resonant transitions of a
system. Note that physically all these techniques are equivalent as they are
all based on Kohn-Sham DFT and are simply different ways to obtain the
same quantities. Often the choice between them is done purely on numerical
arguments, as each one is more adapted to certain numerical implementations
[Marques 2006].

We will show that the three methods are connected to each other in a
simple way. Since the purpose is to connect all these approaches, we will con-
sider only weak perturbations. For pedagogical reasons, we make the following
simplifying assumptions in the discussion below that can be easily general-
ized (see discussion at the end of this Section): i) the exchange-correlation
functional does not have memory, i.e., we work within the adiabatic approx-
imation (see ), ii) the system is spin-unpolarized, iii) we have no fractional Cross Chap. Adia-

batic approximationoccupations, and iv) we use no k-point sampling, i.e., only Γ -point or a non-
periodic system, which allows us to use purely real (i.e., imaginary part is
zero) ground-state Kohn-Sham wavefunctions. Assumption (i) is in practice
not very restrictive, as a large majority of the functionals used in TDDFT
are, indeed, adiabatic. Assumptions (ii)-(iv) are valid, for example, for closed-
shell molecules. In any case it is fairly straightforward (but cumbersome) to
remove the assumptions from the derivation. We will return to this topic in
the end of the section.

1.2.1 Time-propagation method

In the time-propagation approach, the time-dependent Kohn-Sham equations
are propagated in real-time (for details, see ), i.e., by solving the following Cross Chap. TPT-

DDFTnonlinear partial differential equation

i
∂

∂t
ϕk(r, t) = ĤKS[n(r

′, t)](r, t)ϕk(r, t), (1.19)

starting from time t = 0 with the initial condition ψk(r, t = 0) = φ
(0)
k (r),

where φ
(0)
k (r) are the ground-state Kohn-Sham wavefunctions. Here, we al-

ready have applied the adiabatic approximation by assuming that ĤKS[n](r, t)
has a functional dependence only on the instantaneous density n(r, t) instead
of on its whole history.

If no perturbation is applied to the system, the system remains in the
ground-state and the time-evolution of the KS wavefunctions is trivial: ψk(t) =
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φ(0)e−iε
(0)
k

t. If we apply a weak time-dependent external perturbation with
a given frequency ω, the time-evolution becomes nontrivial because of the
nonlinearity of the Kohn-Sham Hamiltonian. A general form for a weak time-
dependent external perturbation with a given frequency ω is

vext(r, t) = λvcosext(r) cos(ωt) + λvsinext(r) sin(ωt) (1.20)

or, rewriting in terms of the exponential

vext(r, t) = λv+ω
ext (r)e

+iωt + λv−ωext (r)e
−iωt, (1.21)

where λ is the strength of the perturbation. If we now insert this external
potential to the TDKS equation and propagate in time, we can obtain phys-
ical observables from the time-dependent expectation values. For example, if
we apply a weak delta pulse of a dipole electric field2

vext(r, t) = −er ·Kδ(t) = −er ·K
1

2π

∫ ∞

−∞
dω exp(iωt), (1.22)

we simply replace the ground-state wavefunctions (solutions to Hamiltonian

Ĥ
(0)
KS) by

ψk(r, t = 0+) = exp

{

−i

∫ 0+

0−
dt
[

Ĥ
(0)
KS(t)− er ·Kδ(t)

]

}

ψk(r, t = 0−)

= exp (ier ·K)ψk(r, t = 0−), (1.23)

and propagate the free oscillations in time. Then the time-dependent dipole
moment

µ(t) = −e

∫

d3r rn(r, t) (1.24)

can be used to extract the dynamic polarizability tensor α(ω). The series
expansion of the time-dependent dipole moment in frequency space reads

µγ(ω) = µγ(0) + αγδ(ω)Kδ +O(K
2
δ ) (1.25)

where µγ(ω) is the Fourier transform of the time-dependent dipole moment
in direction γ, and µγ(0) is the static dipole moment. We obtain3

αγδ(ω) =
1

Kδ

∫ ∞

0

dt
[

µγ(t)− µγ(0
−)
]

e−iωt +O(Kδ). (1.26)

The imaginary part of the diagonal component of the dynamic polarizabil-
ity I[αδδ(ω)] is proportional to the absorption spectrum. The above equation

2 Note that K has units of electric field times time.
3 Note that the integration begins from t = 0− instead of −∞, which basically
corresponds to adding a Heaviside function θ(t−0−) inside the Fourier transform.
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includes an integral over infinite time. Obviously, infinite time-propagation
is not possible in practice, and we have to add an artificial lifetime to the
equation by introducing a decay e−ηt:

αγδ(ω) =
1

Kδ

∫ ∞

0

dt
[

µγ(t)− µγ(0
−)
]

e−iωte−ηt +O(Kδ). (1.27)

which corresponds to forcing all excitations to decay back to the ground state
with rate η.

Higher-order responses (e.g., hyperpolarizibilities) are automatically con-
sidered in the calculation. However, if the field is chosen weak enough, they
have negligible contribution, as should be the case for a linear-response calcu-
lation. If the perturbation strength is increased, the nonlinear contributions
begin to increase: 2nd order quadratically, 3rd order cubically, etc. In addition
to the different scaling with respect to the perturbation strength, higher-order
responses appear at combinations of existing frequencies, which will be dis-
cussed in the next subsection. To disentangle the different contributions from
the time propagation scheme is not always a well-defined procedure.

1.2.2 Sternheimer method

The time-propagation approach propagates the TDKS equations in real-time.
If we apply time-dependent perturbation theory and transform the equations
to frequency space, we obtain the Sternheimer method, which is also known
as density-functional perturbation theory (DFPT), particularly in its static
form [Baroni 2001], and as “coupled perturbed Kohn-Sham” (CPKS) in the
quantum-chemistry literature.

As the time-dependent external perturbation was chosen weak, we can
expand the TD-KS states and the TD-KS-Hamiltonian as a power series
with respect to the perturbation strength λ. The perturbation expansion4 of
the TD-KS states reads

ϕk(r, t) = ϕ
(0)
k (r, t) + λϕ

(1)
k (r, t) + λ2ϕ

(2)
k (r, t) + ... (1.28)

where the zeroth-order response has trivial time-dependence ϕ
(0)
k (r, t) =

ϕ
(0)
k (r)e−iε

(0)
k

t. The perturbation expansion of the TD-KS Hamiltonian reads

ĤKS(r, t) = Ĥ
(0)
KS [n

(0)(r′, t)](r)

+ λv
(1)
ext(r, t) + λ2v

(2)
ext(r, t) + ...

+ λĤ
(1)
KS [n(r

′, t)](r, t) + λ2Ĥ
(2)
KS [n(r

′, t)](r, t) + ... (1.29)

4 Note that this expansion is not a Taylor expansion.
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where Ĥ
(0)
KS [n

(0)(r′)](r) is the ground-state Hamiltonian. The Ĥ
(k)
KS [n(r

′, t)](r, t)
are the kth-order response Hamiltonians, i.e. kth derivatives of the Hamilto-
nian with respect to the magnitude of the bare external perturbation. 5 These
response Hamiltonians arise from the nonlinearity of the TD-KS Hamilto-
nian, when the system is perturbed by the time-dependent external potential
vext(r, t).

The response Hamiltonians require the time-dependent density

n(r, t) =
∑

k

nk|ϕk(r, t)|
2

=
∑

k

nk

{

|ϕ
(0)
k (r, t)|2 + λ

[

(ϕ
(0)
k (r, t))∗ϕ(1)(r, t) + (ϕ

(1)
k (r, t))∗ϕ(0)(r, t)

]

+λ2
[

(ϕ
(2)
k (r, t))∗ϕ(0)(r, t) + (ϕ

(0)
k (r, t))∗ϕ(2)(r, t) + |ϕ

(1)
k (r, t)|2

]

+ ...
}

= n(0)(r, t) + λn(1)(r, t) + λ2n(2)(r, t) + ... (1.30)

where nk is the occupation of the kth KS-state.

Each response Hamiltonian Ĥ
(k)
KS [n(r

′, t)](r, t) depends only on the re-
sponse densities n(j≤k)(r, t) which are of lower or equal order. For example,
the zeroth-order response Hamiltonian is just the ground-state KS-Hamiltonian,
which depends only on the ground-state density. The first-order response
Hamiltonian

Ĥ
(1)
KS [n(r

′, t)](r) =

∫

d3r′ fHxc[n
(0)](r, r′)n(1)(r′, t) (1.31)

has the first-order Hartree-exchange-correlation kernel fHxc[n
(0)](r, r′), which

depends on the ground-state density n(0)(r), multiplied by the first-order
density response n(1)(r, t).

Now, by equating different orders of λ in the TD-KS equation, we obtain
in zeroth order

i
∂

∂t
ϕ
(0)
k (r, t) = Ĥ

(0)
KS [n

(0)](r)ϕ
(0)
k (r, t), (1.32)

in first order,

i
∂

∂t
ϕ
(1)
k (r, t) = Ĥ

(0)
KS [n

(0)](r)ϕ
(1)
k (r, t)

+
[

Ĥ
(1)
KS [n](r, t) + v

(1)
ext(r, t)

]

ϕ
(0)
k (r, t), (1.33)

5 Remember that we are working within the adiabatic approximation here, and
therefore, the TD-KS Hamiltonian has no memory.
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in second order,

i
∂

∂t
ϕ
(2)
k (r, t) = Ĥ

(0)
KS [n

(0)](r)ϕ
(2)
k (r, t)

+
(

Ĥ
(1)
KS [n](r, t) + v

(1)
ext(r, t)

)

ϕ
(1)
k (r, t)

+
(

Ĥ
(2)
KS [n](r, t) + v

(2)
ext(r, t)

)

ϕ
(0)
k (r, t), (1.34)

and so on. The equations form a hierarchy, where higher-order responses can
be calculated from the lower-order ones [Gonze 1989, Gonze 1995b].

The above equations still depend on time in a non-trivial way (except the
zeroth order which is just the trivial time-propagation of the ground-state).
Nevertheless, the only explicit time-dependence is in the time-dependent ex-
ternal potential. If the potential has only one frequency, the linear response
will also have only one frequency. If the potential has two frequencies, the
linear response has two. However, the second-order response will have fre-
quencies which are sums and differences of the original frequencies. For ex-
ample, in case of one frequency ω, the second-order response has frequency
ω − ω = 0 and frequency ω + ω = 2ω. Furthermore, in the case of two fre-
quencies ω1 and ω2, the second-order response has frequencies 0, 2ω1, 2ω2,
ω1+ω2, and |ω1−ω2|. The 3rd-order mixes three frequencies, and in addition
to the frequencies of the field, it can also mix the frequencies generated by
the 2nd-order response. Each new order brings new mixed frequencies.

From this point onward, we assume that we have only a single frequency
ω in the external field. The external field reads

v
(1)
ext(r, t) = v+ω

ext (r)e
+iωt + v−ωext (r)e

−iωt, (1.35)

or, if we choose to use a cosine field,

v
(1)
ext(r, t) =

1

2
vωext(r)e

+iωt +
1

2
vωext(r)e

−iωt = vωext(r) cosωt. (1.36)

A general first-order wavefunction in this case can be written as

ϕ(r, t) = e−iε
(0)t−iλ∆ε(1)(t)

×
{

ϕ(0)(r) + λ
[

ϕ
(1)
+ω(r)e

iωt + ϕ
(1)
−ω(r)e

−iωt
]}

+O(λ2), (1.37)

where ϕω(r) are now time-independent, and we have included a time-dependent
level shift

∆ε(1)[n](t) =

∫ t

−∞
dt
〈

ϕ(0)
∣

∣

∣Ĥ
(1)
KS [n](t) + v

(1)
ext(t)

∣

∣

∣ϕ(0)
〉

. (1.38)

The first-order level shift ∆ε(1)(t) is a first order correction to the phase
of the zeroth-order wavefunction caused by the first-order Hamiltonian. By
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including it, we keep the first-order wavefunction ϕ
(1)
±ω orthogonal to the

zeroth-order wavefunction ϕ(0). Otherwise, ϕ
(1)
±ω would be time-dependent

and include a time-dependent ϕ(0) component in order to correct the phase
[Langhoff 1972].

From the wavefunction, we obtain the response densities. The zeroth-order
density is just the ground-state density

n(0)(r, t) =
∑

k

nk|ϕ
(0)
k (r)|2, (1.39)

and the first-order response density

n(1)(r, t) =
∑

k

nk

{

[ϕ
(0)
k (r)]∗ϕ

(1)
k,+ω(r)e

iωt + [ϕ
(0)
k (r)]∗ϕ

(1)
k,−ω(r)e

−iωt

+[ϕ
(1)
k,+ω(r)]

∗ϕ
(0)
k (r)e−iωt + [ϕ

(1)
k,−ω(r)]

∗ϕ
(0)
k (r)eiωt

}

=
∑

k

nk

{

[ϕ
(0)
k (r)]∗ϕ

(1)
k,+ω(r) + [ϕ

(1)
k,−ω(r)]

∗ϕ
(0)
k (r)

}

eiωt + cc. (1.40)

is oscillating at the frequency ω as expected.
Next, we insert the guess wavefunction to the TDKS equation and expand

it up to first order. On the left-hand-side, we obtain

i
∂

∂t

(

ϕ
(0)
k (r) + λϕ

(1)
k,+ω(r)e

iωt + λϕ
(1)
k,−ω(r)e

−iωt
)

e−iε
(0)
k

t−iλ∆ε
(1)
k

(t)

= e−iε
(0)
k

t−iλ∆ε
(1)
k

(t)

{[

ε
(0)
k + λ

∂

∂t
∆ε

(1)
k (t)

]

ϕ
(0)
k (r)

+λ
(

−ω + ε
(0)
k

)

ϕ
(1)
k,+ω(r)e

iωt + λ
(

ω + ε
(0)
k

)

ϕ
(1)
k,−ω(r)e

−iωt
}

+O(λ2).

(1.41)

On the right-hand-side, we obtain

{

Ĥ
(0)
KS [n

(0)](r)ϕ
(0)
k (r) + λĤ

(0)
KS [n

(0)](r)
[

ϕ
(1)
k,+ω(r)e

iωt + ϕ
(1)
k,−ω(r)e

−iωt
]

+λ

[∫

d3r′ fHxc[n
(0)](r, r′)n(1)(r′, t) + v

(1)
ext(r, t)

]

ϕ
(0)
k (r)

}

× e−iε
(0)
k

t−iλ∆ε
(1)
k

(t) +O(λ2). (1.42)

The first-order equation can now be written in matrix form by gathering

terms proportional to the resonant part eiωt−iε(0)
k

t−iλ∆ε
(1)
k

(t) and to the anti-
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resonant part e−iωt−iε(0)
k

t−iλ∆ε
(1)
k

(t):

(

Ĥ
(0)
KS − ε

(0)
k + ω 0

0 Ĥ
(0)
KS − ε

(0)
k − ω

)(

ϕ
(1)
k,+ω

ϕ
(1)
k,−ω

)

= −





(

v
(1)
Hxc,+ω + v

(1)
ext,+ω − ε

(1)
k,+ω

)

ϕ
(0)
k

(

v
(1)
Hxc,−ω + v

(1)
ext,−ω − ε

(1)
k,−ω

)

ϕ
(0)
k



 , (1.43)

where

v
(1)
Hxc,±ωe

±iωt =

∫

d3r′ fHxc[n
(0)](r, r′)n

(1)
±ω(r

′, t), (1.44)

n
(1)
±ω(r, t) =

∑

k

nk

{

[ϕ
(0)
k (r)]∗ϕ

(1)
k,±ω(r) + [ϕ

(1)
k,∓ω(r)]

∗ϕ
(0)
k (r)

}

e±iωt, (1.45)

and ε
(1)
k,±ω is the Fourier transform of ∂

∂t∆ε
(1)
k (t):

ε
(1)
k,±ω =

〈

ϕ
(0)
k

∣

∣

∣v
(1)
Hxc,±ω + v

(1)
ext,±ω

∣

∣

∣ϕ
(0)
k

〉

. (1.46)

In this form, the Sternheimer method looks like a set of linear equations,
but in reality it is a nonlinear set of equations as the right-hand side depends

on the solution through v
(1)
Hxc,±ω which depends on n

(1)
±ω and therefore on

ϕ
(1)
k,±ω. The usual way is to introduce a self-consistent field (SCF) iteration

for the response density n
(1)
±ω, as for the ground-state DFT problem. This

is the essence of the Baroni-Gianozzi-Testa (BGT) method [Baroni 1987b],
originally used for static perturbations but equally applicable to TDDFT
[Andrade 2007]. A related Lanczos superoperator scheme for efficient calcu-
lation of complete spectra is also available [Walker 2006], which is discussed
in . Cross Chap. 20

By projecting the Sternheimer equation onto the unperturbed wavefunc-
tions, one obtains the sum-over-states expression in second-order perturba-
tion theory for the wavefunction:

ϕ
(1)
k,ω =

∑

m 6=k

∣

∣

∣ϕ(0)
m

〉

〈

ϕ
(0)
m

∣

∣

∣
Ĥ

(1)
ω

∣

∣

∣
ϕ
(0)
k

〉

ε
(0)
m − ε

(0)
k + ω

(1.47)

where Ĥ
(1)
ω = v

(1)
Hxc,ω + v

(1)
ext,ω. Using the Sternheimer equation has the great

advantage that it avoids the need for explicit calculation of the unoccupied
states that would occur in this sum over states.

As with the time-propagation approach, we have to include an artificial
lifetime. Otherwise, i) the matrix is singular when ω corresponds to the KS-
eigenvalue difference εa − εi (an excitation in the independent particle pic-
ture), or ii) the response becomes infinite when ω corresponds to a resonance
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(an excitation in the interacting picture). The former is simply a numeri-
cal issue, but the later one has physical meaning and will be used to derive
Casida’s equation in the next subsection. The artificial lifetime is introduced

by multiplying the first-order wavefunction ϕ
(1)
k (r, t) and the external poten-

tial vext(r, t) by a decay term e−ηt. In the first order, the matrix equation
then reads

(

Ĥ
(0)
KS − ε

(0)
k + ω + iη 0

0 Ĥ
(0)
KS − ε

(0)
k − ω + iη

)(

ϕ
(1)
k,+ω

ϕ
(1)
k,−ω

)

= −Pc





(

v
(1)
Hxc,+ω + v

(1)
ext,+ω

)

ϕ
(0)
k

(

v
(1)
Hxc,−ω + v

(1)
ext,−ω

)

ϕ
(0)
k



 (1.48)

The matrix is no longer singular, and the resonances become Lorentzians
with width η instead of delta functions. We also added a projector to the
unoccupied space Pc = 1−Pocc, which orthogonalizes the KS response wave-
functions with respect to the occupied KS ground-state wavefunctions. The
components of the response wavefunctions in the occupied subspace are not
needed because they cancel out in the density response. The projector avoids
solving for these (possibly large) components, making the numerical solution
more efficient and stable [Baroni 2001, Andrade 2007]. It also simplifies the

equation by removing the level shift ∆ε
(1)
±ω. Finally, after the self-consistent

solution is found, the linear density response is directly available from equa-
tion (1.45).

The Sternheimer equation is particularly suited to the calculation of
higher-order response, because solution of only the first-order problem can ac-
tually give access to up to third-order derivatives of the total energy (second-
order response), as stated by the 2n + 1 Theorem for DFT [Gonze 1989].

Variational principles can be used to show that
{

φ
(n)
i

}

, the derivatives of or-

der n of the KS wavefunctions with respect to a perturbation, can be used to
construct all derivatives of the total energy up to order 2n+1. Consider a bare

external perturbation Ĥ
(n)
bare and a total perturbation Ĥ(n), including Hartree

and exchange-correlation response (the “local fields” [Hybertsen 1987]). For
n = 0, this theorem reduces to the familiar Hellman-Feynman Theorem, used
in calculation of forces from only ground-state quantities:

E(1) =
∂E

∂λ
=

occ
∑

i

〈

ϕi

∣

∣

∣
Ĥ

(1)
bare

∣

∣

∣
ϕi

〉

(1.49)

At n = 1, the expression for the second derivative (first-order response) is

E(2) =
occ
∑

i

[〈

ϕ
(0)
i

∣

∣

∣
Ĥ(1)

∣

∣

∣
ϕ
(1)
i

〉

+ cc.+
〈

ϕ
(0)
i

∣

∣

∣
Ĥ

(2)
bare

∣

∣

∣
ϕ
(0)
i

〉]

(1.50)



1 Response functions in TDDFT: concepts and implementation 15

and for the third derivative (second-order response) are

E(3) =
occ
∑

i

[〈

ϕ
(1)
i

∣

∣

∣
Ĥ(1)

∣

∣

∣
ϕ
(1)
i

〉

+
〈

ϕ
(1)
i | ϕ

(1)
i

〉〈

ϕ
(0)
i

∣

∣

∣
Ĥ(1)

∣

∣

∣
ϕ
(0)
i

〉

+
〈

ϕ
(1)
i

∣

∣

∣Ĥ
(2)
bare

∣

∣

∣ϕ
(0)
i

〉

+ cc.+
〈

ϕ
(0)
i

∣

∣

∣Ĥ
(3)
bare

∣

∣

∣ϕ
(0)
i

〉]

+
1

6

∫

δ3E
[

n(0)
]

δn (r) δn (r′) δn (r′′)
n(1) (r)n(1) (r′)n(1) (r′′) dr dr′ dr′′ (1.51)

where superscripts indicate the order of derivatives with respect to the per-

turbation [Gonze 1989]. The bare perturbation Ĥ
(n)
bare is zero for n > 1 for

electric fields, but not in general. The third functional derivative here is the
second-order kernel Mxc.

Conveniently, it turns out even in these equations, only the projection

of the wavefunction derivatives onto the unoccupied subspace Pc ϕ
(1)
i are

required for this formula [Debernardi 1994], making the Sternheimer calcu-
lation more efficient. With this formula for E(3), the Sternheimer approach
allows efficient access to phonon anharmonicities and nonlinear optical sus-
ceptibilities from solution of the first-order Sternheimer equation. This is
true even for mixed derivatives with respect to perturbations in different di-
rections or even entirely different perturbations. To get even higher orders,

one can use the hierarchy of Sternheimer equations to solve for
{

ϕ
(n)
i

}

from

results at lower orders [Gonze 1989, Gonze 1995b]. The situation becomes
somewhat more complicated beyond first order: the entire wavefunctions,
not just projections to the unoccupied subspace, are needed, and the issues
of phases and normalization are more subtle than in the first-order equation
[Strubbe 2011a]. The 2n + 1 formulae for the energy derivatives at higher
orders are straightforward but increasingly lengthy. For the time-dependent
case, rather than total energies we use instead the action, or in the frequency
domain, the Floquet quasi-energy [Langhoff 1972].

The 2n + 1 theorem actually also provides an alternate calculation ap-
proach for ϕ(1) [Gonze 1995b, Dal Corso 1996, Gonze 1997a, Baroni 2001].
The formula for E(3) is variational with respect to ϕ(1), just as E is varia-
tional with respect to ϕ(0), as stated in the standard Variational Theorem of
quantum mechanics. As a result, one can solve for ϕ(1) by direct minimiza-

tion of the functional E(3)
[{

ϕ
(1)
i

}]

. This approach is formally equivalent

to solution by self-consistency, and the choice of technique is a question of
numerical strategy.

1.2.3 Casida method

From the Sternheimer method, we can continue to Casida’s equation by writ-
ing the linear Sternheimer equation in the particle-hole basis, i.e., in the
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Kohn-Sham orbital basis including unoccupied states. First, we write the
first-order response wavefunction as a linear combination of Kohn-Sham or-
bitals (i.e., sum-over-states expansion)

ϕ
(1)
k (r) =

∑

a

c(k)a ϕ(0)
a (r), (1.52)

where c
(k)
a is the coefficient for an electronic excitation from the kth occu-

pied state to the ath basis function ϕ
(0)
a , i.e., some unoccupied KS state.

As in Eq. (1.48), we are considering only the projection of ϕ
(1)
k (r) into the

unoccupied subspace, which will remove the level shift. We insert this linear
combination into the first-order equation and multiply it from the left by

〈ϕ
(0)
b |, i.e., take an inner product with another basis function. The first-order

TD-KS equation (1.43) now reads

∑

a

(

−ω + ε
(0)
k

)

δa,be
iωt−iε(0)

k
tc(k,+ω)

a +
(

ω + ε
(0)
k

)

δa,be
−iωt−iε(0)

k
tc(k,−ω)

a

=
∑

a

ε(0)a δa,be
iωt−iε(0)

k
tc(k,+ω)

a +
∑

a

ε(0)a δa,be
iωt−iε(0)

k
tc(k,−ω)

a

+ 〈ϕ
(0)
b |fHxc[n

(0)])n(1)(t)|ϕ
(0)
k 〉e

−iε(0)
k

t

+ 〈ϕ
(0)
b |vext(t)|ϕ

(0)
k 〉e

−iε(0)
k

t. (1.53)

Writing the equations in a basis allows us to remove the nonlinearity
caused by the Hartree-exchange-correlation kernel:

〈ϕ
(0)
b |f̂Hxc[n

(0)]n(1)(t)|ϕ
(0)
k 〉e

−iε(0)
k

t =

∫

d3r

∫

d3r′ fHxc[n
(0)](r, r′)

×
∑

k′

nk′

{[

[ϕ
(0)
k′ (r

′)]∗ϕ
(1)
k′,+ω(r

′) + [ϕ
(1)
k′,−ω(r

′)]∗ϕ
(0)
k′ (r

′)
]

eiωt

+
[

[ϕ
(0)
k′ (r

′)]∗ϕ
(1)
k′,−ω(r

′) + [ϕ
(1)
k′,+ω(r

′)]∗ϕ
(0)
k′ (r

′)
]

e−iωt
}

× ϕ
(0)
b (r)ϕ

(0)
k (r)d3rd3r′ (1.54)

Inserting the expansion for ϕ(1) in terms of the unoccupied KS eigenfunctions
gives

〈ϕ
(0)
b |fHxc[n

(0)]n(1)(t)|ϕ
(0)
k 〉e

−iε(0)
k

t =

∫

d3r

∫

d3r′ fHxc[n
(0)](r, r′)

×
∑

k′,b′

nk′

{[

ϕ
(0)
k′ (r

′)c
(k′,+ω)
b′ ϕ

(0)
b′ (r′) + (c

(k′,−ω)
b′ )∗ϕ

(0)
b′ (r′)ϕ

(0)
k′ (r

′)
]

eiωt

+
[

ϕ
(0)
k′ (r

′)c
(k′,−ω)
b′ ϕ

(0)
b′ (r′) + (c

(k′,+ω)
b′ )∗ϕ

(0)
b′ (r′)ϕ

(0)
k′ (r

′)
]

e−iωt
}

× ϕ
(0)
b (r)ϕ

(0)
k (r)d3rd3r′ (1.55)
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This finally leads to

〈ϕ
(0)
b |fHxc[n

(0)]n(1)(t)|ϕ
(0)
k 〉e

−iε(0)
k

t =
∑

k′,b′

nk′Kbk,b′k′

{[

c
(k′,+ω)
b′ + (c

(k′,−ω)
b′ )∗

]

eiωt +
[

c
(k′,−ω)
b′ + (c

(k′,+ω)
b′ )∗

]

e−iωt
}

,

(1.56)

where

Kbk,b′k′ =

∫

d3r

∫

d3r′ fHxc[n
(0)](r, r′)ϕ

(0)
k′ (r

′)ϕ
(0)
b′ (r′)ϕ

(0)
b (r)ϕ

(0)
k (r) (1.57)

is the Hartree-exchange-correlation matrix element for interaction of excita-
tions b ← k and b′ ← k′ (k and k′ are occupied orbitals, b and b′ unoccu-
pied). This term couples independent-particle excitations (KS-eigenvalue dif-
ferences) to interacting-particle excitations (TD-KS transition frequencies).
Remember that we assumed the KS orbitals to be real functions.

The matrix form of the Sternheimer equation in the particle-hole basis
reads as











∆E + ωI 0 −η 0

0 ∆E − ωI 0 −η

η 0 ∆E + ωI 0

0 η 0 ∆E − ωI





















C(+ω,re)

C(−ω,re)

C(+ω,im)

C(−ω,im)











= −











K K 0 0

K K 0 0

0 0 K −K

0 0 −K K











N











C(+ω,re)

C(−ω,re)

C(+ω,im)

C(−ω,im)











−N1/2











V+ω,re

V−ω,re

V+ω,im

V−ω,im











, (1.58)

where real and imaginary parts have been separated,∆Ebk,b′k′ = δk,k′δb′,b′(εb−

εk), Nbk,b′k′ = δk,k′δb,b′nk′ , V ±ωbk = 〈ϕ
(0)
b |vext,±ω|ϕ

(0)
k 〉 and K is the above

Hartree-exchange-correlation kernel matrix. As one can easily see, the non-
linearity is has been eliminated, i.e., the above equation is a linear equation
if the first term on the right-hand side is moved to the left:





















−∆E −K −K η 0

K ∆E +K 0 −η

−η 0 −∆E −K K

0 η −K ∆E +K











− ωI











×











B(+ω,re)

B(−ω,re)

B(+ω,im)

B(−ω,im)











= −N











−V+ω,re

V−ω,re

−V+ω,im

V−ω,im











, (1.59)
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where K = N1/2KN1/2, B = N1/2C, and we have already modified it slightly
for convenience in the rest of the discussion.

In the limit when the lifetime parameter η goes to zero (i.e., infinite
lifetime), the matrix has singularities at certain frequencies. As we included
the Hartree-exchange-correlation kernel in the matrix, the response has poles
only at the interacting resonance frequencies, and not at the noninteracting
resonance frequencies as Eq. (1.48) did. Therefore, we can find the interacting
resonance frequencies in the limit η → 0 by finding the singularities of the
matrix.

The matrix is a 2×2 block-diagonal system in the limit η → 0, and the sec-
ond diagonal block is the transpose of the first one. The blocks have the same
eigenvalues, but the right and left eigenvectors of the blocks are swapped. We
can focus on the first block and find the eigenvalues of the following equation:

[(

−∆E −K −K

K ∆E +K

)

− ωI

](

−B(+ω,re)

B(−ω,re)

)

= 0. (1.60)

We apply an unitary transformation Q = 1√
2

(

1 1

−1 1

)

, and multiply from

left by ∆E
1
2 to obtain

[(

0 ∆E

∆E + 2∆E
1
2K∆E−

1
2 0

)

− ωI

](

∆E
1
2 [B(+ω,re) +B(−ω,re)]

∆E
1
2 [−B(+ω,re) +B(−ω,re)]

)

= 0.

(1.61)
The determinant of the matrix inside the square brackets can be easily cal-
culated as ∆E and ωI are diagonal. Setting the determinant equal to zero
gives us the eigenvalue equation

∆E2 + 2∆E
1
2K∆E

1
2 = ω2I (1.62)

or, when we expand K = N
1
2KN

1
2 ,

∆E2 + 2∆E
1
2N

1
2KN

1
2∆E

1
2 = ω2I, (1.63)

which is the well-known Casida’s equation with one small difference: instead
of differences of occupation numbers (na−ni), the actual occupation numbers
appear. This is a consequence of our assumption of integral occupations. The
extension to fractional occupations will be discussed in the next subsection.

The eigenvectors F of Casida’s equation, Eq. (1.63), can be used to extract
the strength of the response to the external field. After some algebra, for
example, the polarizability can be written as

αγδ(ω) = µγN
1
2∆E

1
2

∑

k

Fk

(

ω2
k − ω

2
)−1

F †k∆E
1
2N

1
2µδ, (1.64)

where µδ is the dipole-moment operator in direction δ, with matrix elements

in the particle-hole basis µδ,ai = 〈ϕ
(0)
a |rδ|ϕ

(0)
i 〉.
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1.2.4 Generalizations and discussion

In this subsection, we will discuss what changes if we do not make the as-
sumptions of the beginning of the section. We start with the first assumption
– the adiabatic approximation. Without the adiabatic approximation, the
exchange-correlation functional has memory, i.e., the exchange-correlation
functional depends on density at all previous times. In principle, it is trivial
for the time-propagation method. We only have to store all previous densities
and calculate the exchange-correlation potential from these. In practice, this
is very demanding task and often impossible beyond model systems.

In the Sternheimer method, memory will show up as a frequency depen-
dence of the exchange-correlation kernels. At first order, the kernel depends
only on one frequency, fxc[nGS](r, r

′, ω), but at higher orders it depends on
multiple frequencies. Again, if explicit forms of the frequency-dependent ker-
nels are known, it is straightforward to include memory in principle. However,
a practical implementation might not be easy and it will depend a lot on the
actual form of the memory-dependence in the functionals, which remains an
important unresolved theoretical issue [see ]. Cross Chap. 8

In the case of the Casida method, the matrix becomes frequency-dependent
[Casida 1995], which means that the linear eigenvalue problem becomes a non-
linear eigenvalue problem. A nonlinear eigenvalue problem is much harder to
solve than a linear eigenvalue problem (e.g., SCF iterations may be required).

If a system is spin-polarized, each spin has its own exchange-correlation
potential vαxc and vβxc. The exchange-correlation kernel is replaced by three
exchange-correlation kernels fααxc , fββxc , and fαβxc [Casida 1995, Guan 2000].

If a system has fractional occupation numbers, an excitation which hap-
pens from one partially occupied state i to another partially occupied state
j will have an opposite excitation (or de-excitation) from j to i. The ex-
pressions from perturbation theory now contains the occupation difference
ni−nj . The original presentation of the Casida method [Casida 1995] shows
this general case. The situation for the Sternheimer method is significantly
more complicated due to the question of what happens to the projection
onto the unoccupied subspace. For metals, smearing is generally needed for
reasonable convergence of the ground-state problem with respect to k-point
sampling. A computational scheme has been derived to solve the Sternheimer
equation when the occupation function corresponds to a smearing, which is
generally needed for reasonable convergence of the ground state of metals
with respect to k-point sampling [de Gironcoli 1995]. Smearing methods such
as Gaussian, Methfessel-Paxton, and “cold smearing” provide an occupation
function θ̃ (x) depending on energy and satisfying certain properties of the
Fermi-Dirac thermal distribution. In this case, introduction of some extra
projectors into the Sternheimer equation allows the density response

n(1) =
∑

ij

θ̃ (εF − εi)− θ̃ (εF − εj)

εi − εj
ϕ∗iϕj

〈

ϕj

∣

∣

∣Ĥ
(1)
bare

∣

∣

∣ϕi

〉

(1.65)
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to be written in the same form as Eq. (1.45) for the zero-temperature (semi-
conducting) case in which all states are full or empty. The smearing functions
give the correct answer only in the limit of zero smearing width, and are de-
signed to improve convergence while minimizing the error with respect to
the unsmeared case; by contrast the Fermi-Dirac distribution can be used to
describe physical temperature effects. In both the static and dynamic case,
one must take care about what physical ensemble the system is supposed to
be in, to determine whether the assumption that the occupations and Fermi
level are not affected by the perturbation is appropriate [Baroni 2001]. It is
also possible to generalize the smearing scheme to the case of arbitrary occu-
pations, for a distribution that does not satisfy the properties of a smearing
function or is not even a function of energy at all [Strubbe 2011b]. Finally, if
we use k-points, the ground-state KS wavefunctions become complex and we
cannot obtain the the Casida’s equation (1.63). However, we can still obtain
a similar eigenvalue equation [Reining 2002].

1.3 Applications of linear response

Having reviewed different methods of obtaining response functions, we will
now consider the different perturbations that can be studied and how their
response functions relate to physical quantities of interest. Electric, mag-
netic, structural, and k ·p perturbations, as well as mixed perturbations, are
commonly used to extract both static and dynamic response properties.

1.3.1 Response to electric perturbations

We will begin by considering electric perturbations, because they give access
to optical properties and account for the vast majority of applications of
TDDFT. In molecules, the basic quantity is the polarizability α, defined as
the response of the dipole to an electric field E , in the limit of zero applied
field:

αij (ω) =
∂µi

∂Ej,ω
= −

∂2E

∂Ei,ω∂Ej,ω
(1.66)

The cross-section for optical absorption (in the dipole approximation) can be
calculated from the imaginary part:

σij (ω) =
4πω

c
Im αij (ω) (1.67)

The static polarizability (which is purely real) is commonly calculated by
finite differences of applied field [Vila 2010], and the dynamic polarizability
can be computed by time-propagation [Yabana 1996], typically via applica-
tion of an instantaneous pulsed electric field, which contains all frequencies. A
Fourier transformation of the resulting free oscillations of the dipole moments
yields the polarizability. The absorption spectrum is most often calculated by
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the Casida method [Casida 1995, Jamorski 1996], which was designed for this
problem; it calculates excited states, and a specific perturbation only enters
in the calculation of oscillator strengths. It can be difficult to converge the
real part of the dynamic polarizability below the optical gap in this method
[Jamorski 1996], in which case it is more efficient to do the calculation via
the Sternheimer equation [Andrade 2007]. The electric field appears as a term
E · r in the Hamiltonian, so the perturbation used is ∂H/∂E = r. This is the
response of the dipole moment to a homogeneous electric field, which cou-
ples to the dipole, so these are called dipole-dipole polarizabilities. Similar
methodologies can be used for dipole-quadrupole polarizabilities (response to
a field gradient) and other multipoles [Bishop 1990].

For solids, typically the susceptibility χ (polarizability per unit cell) and
dielectric function ǫ are used instead of the polarizability, related via

ǫ = 1 + 4πχ = 1 + 4π
α

V
(1.68)

where V is the volume of the unit cell. The optical absorption is calculated
just as for finite systems. There is a significant complication in applying a
uniform electric field to a periodic system, because the operator r is not
periodic. There are two ways to solve the problem: the original solution is
to consider spatially modulated fields E (q) = E0e

iq·r, which are periodic al-
though not necessarily commensurate with the cell periodicity. In this case,
one can consider the q → 0 limit to obtain the response to a homogeneous
electric field, which is used in TDDFT calculations in the sum-over-states
[Hybertsen 1987, Levine 1989] and response-function approaches, which is
commonly used for crystals [Olevano 1999, Sagmeister 2009]. It is impor-
tant to consider carefully the relation between microscopic/macroscopic and
transverse/longitudinal responses in this method. Another solution is to use Cross Chap. 3
the quantum theory of polarization [Resta 1994, Vanderbilt 2006] to write the
operator as r = i ∂

∂k , which is periodic [Gonze 1997a]. The k-point deriva-
tives are obtained by finite differences. An equivalent approach is to calculate
the polarization within a basis of Wannier functions [Dal Corso 1994]. In ei-
ther method, we do not study the response of the dipole moment per unit
cell, which is not a well-defined quantity, and instead use the polarization.
To apply finite homogeneous electric fields in periodic systems, the electric-
enthalpy approach can be used, in which a term −µ · E is added to the total
energy functional to be minimized [Souza 2002].

Armed with the dielectric function or polarizability, one can calculate
many interesting properties. Inverting the dielectric matrix yields the loss
function Im ǫ−1 (q, ω), which describes the slowing of energetic electrons in
a solid and is measured in electron energy-loss spectroscopy (EELS) experi-
ments [Onida 2002, Marini 2006]. Van der Waals interaction energies can be
calculated too: the Hamaker coefficients in the expansion

∆E (R) = −
∞
∑

n=6

Cn

Rn
(1.69)
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can be calculated from the Casimir-Polder relation as an integral over polar-
izabilities evaluated as a function of imaginary frequency. The dominant C6

term for interaction of molecules A and B is given by

CAB
6 =

3

π

∫ ∞

0

du α(A) (iu)α(B) (iu) (1.70)

Higher-order terms involve higher-order multipole polarizabilities. These co-
efficients have been calculated by TDDFT with molecular polarizabilities
from time-propagation and Sternheimer methods, and surface susceptibili-
ties from response functions, to study molecule-molecule [Marques 2007] and
molecule-surface interactions [Botti 2008].

Dielectric response can also be considered not for uniform fields but rather
for point charges, giving ǫ (r, r′, ω) from a perturbation 1/ |r − r′|. Time-
propagation has been used to study the spatially resolved plasmon response of
liquid water [Tavernelli 2006]. This form of the dielectric function can also be
used as input for many-body perturbation theory via the GW approximation
[Hedin 1969] and Bethe-Salpeter equation. Typically these calculations use
the RPA dielectric function, which is equivalent to using only the Hartree
response and setting the kernel fxc = 0. However, as pointed out in the first
practical implementation of this scheme [Hybertsen 1986], using instead the
TDDFT ǫ is an approximate way of including the vertex Γ . This methodology
has been used for quasiparticle and optical calculations on organic molecules
[Tiago 2005]. Recently progress has been made in replacing the expensive
sums over states with solution of the time-dependent Sternheimer equation
[Giustino 2010], which can be done with RPA or including fxc. Response
to a related but more exotic perturbation can also be used to parametrize
the DFT+U method, in which projectors on atomic-like orbitals are used to
emulate Coulomb repulsion and correct the energies of localized d- and f -
orbitals in strongly correlated materials [Anisimov 1991]. Ab initio values for
U can be calculated from the screened response to a localized potential αIPI ,
where PI is an atomic-orbital projector, implemented via finite differences
[Cococcioni 2005].

Response to electric perturbations can be used to calculate nonlinear sus-
ceptibilities, describing nonlinear optical properties such as second-harmonic
generation, optical rectification, and electrooptical effects [Shen 1984]. The
hyperpolarizability β of a molecule and second-order susceptibility χ(2) of a
solid are simply the derivatives with respect to field of α and χ, the next
order in the Taylor expansion of the dipole moment:

µi (ω) = µi0 + αij (ω) Ej,ω +
1

2
βijk (ω = ω1 + ω2) Ej,ω1

Ek,ω2
+ ... (1.71)

though conventions can differ on what numerical factors may appear in this
expansion [Willetts 1992]. With the 2n + 1 theorem, solution of the Stern-
heimer equation can be used to calculate molecular hyperpolarizabilities
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[Andrade 2007, Vila 2010] as well as the nonlinear susceptibilites of semi-
conductors with the quantum theory of polarization [Dal Corso 1996]. We
are implementing the time-dependent second-order Sternheimer equation for
use in nonlinear optics [Strubbe 2011a], in which simultaneous k ·p and elec-
tric perturbations can be used for the second-order susceptibility in liquids,
and two electric perturbations give the higher-order hyperpolarizabilities γ
and δ which describe processes such as two-photon absorption and four-wave
mixing.

Finite differences are often also used to calculate static hyperpolarizabili-
ties [Vila 2010], and time-propagation can be used for dynamic hyperpolariz-
abilities; however, the advantage of being able to obtain the entire spectrum
from a single calculation is lost, and separate calculations must be done for
each set of input frequencies [Takimoto 2007]. The response-function tech-
nique has also recently been developed for χ(2) in the q → 0 limit, and applied
to second-harmonic generation in zincblende semiconductors [Hübener 2010].

1.3.2 Response to magnetic perturbations

Magnetic response offers a significant additional challenge compared to elec-
tric response because of the fact that the vector potential has to be formulated
in a particular choice of gauge, which causes particular complications when
localized-orbital bases or non-local pseudopotentials are used. The simplest
quantity to consider is the magnetic susceptibility, the analogue of the elec-
tric susceptibility. The coupling in the Hamiltonian can be expressed with
the vector potential A, field B = ∇×A, and spin magnetic moment gµB ·S
(µB is the Bohr magneton), as

Ĥ =
1

2

(

p+
1

c
A

)2

+V +gµBS ·B = Ĥ(0)+
1

c
p ·A+

A2

2c2
+gµBS ·B (1.72)

The three perturbations are respectively the orbital paramagnetic, (orbital)
diamagnetic, and spin (paramagnetic) contributions. With a particular choice
of gauge, the first term can also be written as r × p · B = L · B. In
spin-unpolarized systems, the spin susceptibility is zero, so just the orbital
perturbation is needed. The Sternheimer equation has been used with this
perturbation to calculate static susceptibilities for boron fullerene molecules
[Botti 2009]. There is actually the advantage, compared to electric perturba-
tions, that to the first-order response of the density is required to be zero if the
ground state has time-reversal symmetry, which is the case in the absence of
spin-polarization or magnetic fields, so that the magnetic Sternheimer equa-
tion does not require self-consistency [Mauri 1996a].

To compute magnetic susceptibilities in solids, we have the same problem
in solids as for electric perturbations that the position operator is not peri-
odic, which can similarly be handled either by taking the q → 0 limit or by
the quantum theory of polarization. The q → 0 approach has been used for
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susceptibilities in crystals [Mauri 1996a]. It has also been used for chemical
shifts in nuclear magnetic resonance (NMR) [Mauri 1996b, Pickard 2001],
which are ratios between the external field and the environment-dependent
screened field at the position of the nuclei. The g-tensor of electron paramag-
netic resonance (EPR), describing the direction-dependent spin susceptibility,
has been calculated by a similar approach for radicals and defects, including
spin-orbit and hyperfine effects [Pickard 2002]. The J coupling between nu-
clear spins in NMR can also be computed by the Sternheimer equation, via
the magnetic field induced at one nucleus by the field of another [Joyce 2007].
Susceptibilities can also be studied by applying finite magnetic fields, but in
the presence of non-local pseudopotentials the coupling in the Hamiltonian
generates additional terms beyond those above to satisfy gauge-invariance,
as can be handled with the ICL [Ismail-Beigi 2001] or GIPAW methods
[Pickard 2003]. When using pseudopotentials, it is important to note that
core susceptibilities may be significant, unlike the electric case; they may be
computed from separate atomic calculations [Mauri 1996a], or handled via
projector-augmented wave (PAW) methods [Pickard 2001]. The susceptibili-
ties of interest are usually static, and the NMR/EPR properties are treated
as static since they are measured at radio frequencies.

To study spin waves in metals, dynamical susceptibilities have been cal-
culated with the Sternheimer equation, where peaks in the spin susceptibility
χ (q, ω) show the magnon band structure [Savrasov 1998]. Spinor wavefunc-
tions are needed to allow spin rotations. Another kind of magnetic response
is the spin-triplet optical excitation spectrum, inaccessible by electric per-
turbations which can only excite singlets. Time-propagation techniques have
been used to calculate triplet states by applying an opposite kick to the up
and down spins [Oliveira 2008]. A dynamic response that combines electric
and magnetic response is circular dichroism, also known as optical rotation,
in which a chiral molecule responds differently to left and right circularly po-
larized light. The rotatory strength as a function of frequency can be studied
via the (orbital) magnetic moment induced by an electric field; the reverse
is possible but more complicated to implement. These properties have been
calculated for organic molecules with both time-propagation and Sternheimer
approaches [Yabana 1999, Varsano 2009]. The techniques have been extended
to deal with magneto-optical chiral effects and many other mixed electro-
magnetical response for finite systems [Espinosa-Leal 2011] (the extension
for periodic systems is under development [Andrade 2011]).

1.3.3 Response to structural perturbations

There is a rich field of study regarding the response to perturbation of ionic
positions and lattice parameters. Since it has been reviewed in great detail
[Baroni 2001], and is mostly concerned with static properties, we will con-
sider only briefly most of these quantities and focus on those where TDDFT
can be used. Forces on the ions and stresses on the unit cell (the diagonal
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part of which is the pressure) can be calculated via the Hellman-Feynman
theorem, which routinely done in static DFT for use in structural relaxation.
These forces can additionally be used for calculation of dynamical matrices
for vibrational properties by means of the frozen-phonon method, in which
finite ionic displacements are used. However, only phonons with commensu-
rate wavectors q can be calculated, and large supercells may be required.
Using the Sternheimer equation has the great advantage that dynamical ma-
trices at arbitrary q may be calculated with effort comparable to that for
zone-center phonons [Baroni 2001]. For displacement of ion s with potential
Vs in direction i, the perturbation is ∂Vs/∂Rsi.

The dynamical matrix is diagonalized to obtain phonon frequencies and
eigenvectors in the harmonic approximation. This information, as function
of cell volume, can also be used as input for the “quasi-harmonic approxi-
mation” (QHA) which is used for free energies and other thermodynamic in-
formation about solids [Wallace 1972, Born 1954, Carrier 2007]. The phonon
group velocities can be computed directly as analytic derivatives from the
phonon perturbation calculation as well [Gonze 1989]. Going beyond the
harmonic approximation, the 2n + 1 Theorem gives access to anharmonic
properties from Sternheimer calculations [Baroni 2001]. Finite-difference cal-
culations have been used to calculate mechanical anharmonicity and electri-
cal anharmonicity (second-order derivatives of force and polarization with
respect to ionic displacement) for ionic contributions to the nonlinear sus-
ceptibility [Roman 2006]. Anharmonicities are need for phonon linewidths in
crystals, as well as to obtain vibrational frequencies in the presence of strong
anharmonicity. Sternheimer phonon calculations also give the induced self-
consistent potential, which is used to calculate the electron-phonon matrix
elements between electronic states i and j and a phonon of wavevector q and
branch ν:

gijν (k, q) =

〈

ϕik+q

∣

∣

∣

∣

∣

dĤ

dλqν

∣

∣

∣

∣

∣

ϕjk

〉

(1.73)

WithWannier-function-based interpolation schemes, the electron-phonon cou-
pling has been used to calculate the superconducting properties of boron-
doped diamond [Giustino 2007] and cuprates [Giustino 2008].

Phonons are generally calculated from static response, an adiabatic ap-
proximation which is well justified when the phonon frequency is much less
than the electronic band gap. For metals however this condition is not sat-
isfied, and the system may not remain in the electronic ground state dur-
ing phonon oscillation. Truly dynamical, or non-adiabatic, phonon calcula-
tions have been done for doped graphene [Lazzeri 2006] and 2D intercalated
compounds [Saitta 2008], showing significant corrections in these systems. A
TDDFT sum-over-states perturbation expression is used to find the dynami-
cal matrix at a given frequency, and self-consistently iterated until the input
and output frequencies coincide.
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Besides these lattice-dynamics methods, another method for vibrational
calculations is molecular dynamics. The system is evolved in time at finite
temperature, and from the ionic trajectories, velocity autocorrelation func-
tions are calculated, giving a power spectrum of vibrations as a function of
frequency [Allen 1989]. Such calculations can be done by empirical methods or
ab initio MD, commonly in the DFT-based Car-Parrinello scheme [Car 1985].
In systems such as liquids, the harmonic approximation fails completely and
MD must be used to study the vibrational modes [Putrino 2002] and infrared
spectra [Silvestrelli 1997]. Recently a new fast Ehrenfest dynamics method
has been developed, in which TDDFT is used to propagate the wavefunc-
tions between timesteps. This allows more efficient calculation of vibrational
properties of large systems [Alonso 2008, Andrade 2009]; the method will
be discussed in detail in . TDDFT has also been used to study coherentCross Chap. 15
excitation of phonons in Si by light, propagating the electronic system in
the presence of an oscillating applied field, and analyzing the induced forces
[Shinohara 2010].

Bulk moduli and elastic constants can be calculated from the second
derivative of the total energy with respect to pressure or shear, with finite dif-
ferences [Lam 1981] or the Sternheimer equation [Baroni 1987a, Baroni 2001].
The strain perturbation involves a stretching of both the unit cell and the
wavefunctions, and takes the tensorial form [Nielsen 1985]

Tij =
pipj
m
− ri

∂Vext
∂rj

(1.74)

Second-order elastic coefficients and Grüneisen parameters (variation of phonon
frequencies with stress) can also be calculated from the 2n + 1 Theorem
[Gonze 1989]. The chain rule must be used to include ionic as well as elec-
tronic contributions.

1.3.4 Mixed electric and structural response to structural

perturbations

Raman spectroscopy measures vibrational frequencies by the energy gained
or lost by a photon, and in the Placzek approximation the intensity of a
vibrational peak is proportional to the Raman tensor [Lazzeri 2003], the
derivative of the polarizability with respect to ionic displacement:

∂3E

∂Ei∂Ej∂Rks
=

∂αij

∂Rks
(1.75)

For solids, the susceptibility χ can be used instead. For off-resonant Raman,
i.e., when the incident phonon is not resonant with an electronic excitation of
the system, the static polarizability is generally used. There are many ways
the response to the various perturbations could be calculated. Commonly fi-
nite differences are used for ionic response, with dielectric tensor calculated
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from sum over states [Baroni 1986], finite differences [Roman 2006], or the
Sternheimer equation [Umari 2001]. Anharmonic Raman spectra of ice have
been calculated with molecular dynamics by a Fourier transform of the au-
tocorrelation function of the dielectric tensor ǫ∞.

Purely perturbative methods has also been developed. In an earlier ap-
proach applied to silica [Lazzeri 2003], the tensor is written as

∂3E

∂Ei∂Ej∂Rks
=

∫

∂2ρ

∂Ei∂Ej

dĤ

dRks
dr (1.76)

The first-order perturbations are calculated by the Sternheimer equation,
and the second-order electric derivatives of the density matrix ρ are cal-
culated via the second-order derivatives of the wavefunctions from a self-
consistent sum-over-states expression. The 2n + 1 Theorem also makes it
possible to do the computation from only first-order ionic and electric deriva-
tives [Veithen 2005]. To study resonant Raman spectroscopy, dynamic polar-
izabilities must be used. This has been done in TDDFT with the complex
polarization propagator approach to study the variation of the Raman spec-
trum with excitation energy for organic molecules [Mohammed 2009]; this
method uses a relaxation toward the ground state in the equations of motion
to broaden resonances and prevent divergences.

Another mixed response is Born effective charges, which can be used to
calculate LO-TO splitting [Ghosez 1998], infrared spectra [Pasquarello 1997],
and molecular dipole moments in liquids [Pasquarello 2003]. They are defined
by

Z∗sij =
∂2E

∂Ei∂Rsj
=

∂µi

∂Rsj
=
∂Fsj

∂Ei
(1.77)

Born charges can be evaluated either as the response of the dipole moment
(or polarization) in response to ionic displacement, which is natural in the
context of a phonon calculation, or from the forces induced by an electric
field, from the Sternheimer equation or finite differences [Gonze 1997b].

A related quantity is the piezoelectric tensor γ, in which ionic displace-
ment is replaced by strain e:

γ∗ijk =
∂2E

∂Ei∂ejk
=

∂µi

∂ejk
=
∂Tjk
∂Ei

(1.78)

The strain perturbation is not lattice-periodic, so piezoelectric tensors are
most easily calculated by the stress T induced by an electric field [de Gironcoli
1989]. Both electronic and ionic contributions must be included.

A quite different quantity is the non-adiabatic coupling (NAC), which is
used in molecular dynamics to govern the rate of hopping between the po-
tential energy surfaces of the ground and excited states [Tully 1990]. Going
beyond the Born-Oppenheimer approximation, terms appear in the equation

of motion containing
〈

Φi

∣

∣

∣

∂
∂Rsj

∣

∣

∣
Φj

〉

(first-order NAC) and
〈
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(second-order NAC) [Hirai 2009], with overlaps between many-body states i,
j and their derivatives with respect to ionic displacement. The Casida method
can be used for first-order NACs, analogously to the calculation of oscillator
strengths but where the dipole operator is replaced with the ionic pertur-
bation [Hu 2007]. A time-propagation formulation has also been developed
[Baer 2002] for the calculation. The second-order NACs cannot be calculated
by these methods, but are negligible in simple cases [Hirai 2009].

1.3.5 Response to k · p perturbations

Response to an infinitesimal shift of k-point in a solid, often referred to as
k · p perturbation theory, can be used to give various properties. These are
by necessity static, not dynamic. Since the perturbation is applied to an indi-
vidual state rather than to the whole system, it does not have an associated
density response. With the Hellman-Feynman Theorem, band velocities can
be calculated as

vik =
1

~

∂εik
∂k

=
1

~

〈

uik

∣

∣

∣

∣

∂Hk

∂k

∣

∣

∣

∣

uik

〉

(1.79)

where uik is the periodic part of the Bloch function and Hk is the effective
Hamiltonian it satisfies. The perturbation is

∂Hk

∂k
= −i∇k + k + [Vps, r] (1.80)

including a contribution from non-local pseudopotentials if they are used
[Rohlfing 2000]. Second-order perturbation theory with a sum over states
can similarly give effective masses [Cardona 1966, Yu 1999], as frequently
used in simple models of band structures and transport in semiconductors.
k ·p perturbation theory has also been used, in a finite-difference framework,
for q → 0 limits in GW [Hybertsen 1986] and BSE [Rohlfing 2000] calcu-
lations. Additionally, k · p perturbations can be used to compute the ∂/∂k
derivatives which are used in response calculations with the quantum theory
of polarization [Olevano 1999, Vanderbilt 2006]. It is important, however, to
note that perturbation theory cannot be used to compute the polarization
itself, because it does not represent a consistent choice of gauge throughout
the Brillouin zone [Resta 1994].
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