405 research outputs found
X-ray ptychography on low-dimensional hard-condensed matter materials
Tailoring structural, chemical, and electronic (dis-)order in heterogeneous media is one of the transformative opportunities to enable new functionalities and sciences in energy and quantum materials. This endeavor requires elemental, chemical, and magnetic sensitivities at the nano/atomic scale in two- and three-dimensional space. Soft X-ray radiation and hard X-ray radiation provided by synchrotron facilities have emerged as standard characterization probes owing to their inherent element-specificity and high intensity. One of the most promising methods in view of sensitivity and spatial resolution is coherent diffraction imaging, namely, X-ray ptychography, which is envisioned to take on the dominance of electron imaging techniques offering with atomic resolution in the age of diffraction limited light sources. In this review, we discuss the current research examples of far-field diffraction-based X-ray ptychography on two-dimensional and three-dimensional semiconductors, ferroelectrics, and ferromagnets and their blooming future as a mainstream tool for materials sciences
Out-of-surface vortices in spherical shells
The interplay of topological defects with curvature is studied for
out-of-surface magnetic vortices in thin spherical nanoshells. In the case of
easy-surface Heisenberg magnet it is shown that the curvature of the underlying
surface leads to a coupling between the localized out-of-surface component of
the vortex with its delocalized in-surface structure, i.e. polarity-chirality
coupling.Comment: 6 pages, 4 figure
Recommended from our members
Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies
X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue--magnetic X-ray tomography--is yet to be developed. Here we demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. The 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. Using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomena between windings of azimuthally and radially magnetized tubular objects. The present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape
AnnoTALE : bioinformatics tools for identification, annotation, and nomenclature of TALEs from Xanthomonas genomic sequences
Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present 'AnnoTALE', a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into classes. Based on these classes, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to related functionalities. This new classification enables us to compare related TALEs and to identify base substitutions responsible for the evolution of TALE specificities
Genomeditierung von Pflanzen im internationalen und rechtlichen Kontext
Das Urteil des Europäischen Gerichtshofs (EuGH) vom Juli 2018 und die damit verbundenen Auflagen für die Zulassung Genom-editierter Pflanzen machen die Nutzung entsprechender Verfahren für die Pflanzenzüchtung in Europa nahezu unmöglich. Unser Mitglied, die Gesellschaft für Pflanzenbiotechnologie, begleitet diese Entwicklungen mit großer Sorge. Hier stellt sie sich und ihre Arbeit vor
Mechanics of extended masses in general relativity
The "external" or "bulk" motion of extended bodies is studied in general
relativity. Compact material objects of essentially arbitrary shape, spin,
internal composition, and velocity are allowed as long as there is no direct
(non-gravitational) contact with other sources of stress-energy. Physically
reasonable linear and angular momenta are proposed for such bodies and exact
equations describing their evolution are derived. Changes in the momenta depend
on a certain "effective metric" that is closely related to a non-perturbative
generalization of the Detweiler-Whiting R-field originally introduced in the
self-force literature. If the effective metric inside a self-gravitating body
can be adequately approximated by an appropriate power series, the
instantaneous gravitational force and torque exerted on it is shown to be
identical to the force and torque exerted on an appropriate test body moving in
the effective metric. This result holds to all multipole orders. The only
instantaneous effect of a body's self-field is to finitely renormalize the
"bare" multipole moments of its stress-energy tensor. The MiSaTaQuWa expression
for the gravitational self-force is recovered as a simple application. A
gravitational self-torque is obtained as well. Lastly, it is shown that the
effective metric in which objects appear to move is approximately a solution to
the vacuum Einstein equation if the physical metric is an approximate solution
to Einstein's equation linearized about a vacuum background.Comment: 39 pages, 2 figures; fixed equation satisfied by the Green function
used to construct the effective metri
The H3K36me2 Methyltransferase Nsd1 Demarcates PRC2-Mediated H3K27me2 and H3K27me3 Domains in Embryonic Stem Cells
The Polycomb repressor complex 2 (PRC2) is composed of the core subunits Ezh1/2, Suz12, and Eed, and it mediates all di- and tri-methylation of histone H3 at lysine 27 in higher eukaryotes. However, little is known about how the catalytic activity of PRC2 is regulated to demarcate H3K27me2 and H3K27me3 domains across the genome. To address this, we mapped the endogenous interactomes of Ezh2 and Suz12 in embryonic stem cells (ESCs), and we combined this with a functional screen for H3K27 methylation marks. We found that Nsd1-mediated H3K36me2 co-locates with H3K27me2, and its loss leads to genome-wide expansion of H3K27me3. These increases in H3K27me3 occurred at PRC2/PRC1 target genes and as de novo accumulation within what were previously broad H3K27me2 domains. Our data support a model in which Nsd1 is a key modulator of PRC2 function required for regulating the demarcation of genome-wide H3K27me2 and H3K27me3 domains in ESCs. The Polycomb repressor complex 2 (PRC2) deposits H3K27me2 and H3K27me3 repressive histone modifications in spatially defined chromatin domains to maintain cellular identity. Streubel et al. identify the H3K36me2 methyltransferase Nsd1 as a key modulator of PRC2 to restrict H3K27me3 deposition and, thereby, to demarcate H3K27me3 from H3K27me2 domains in ESCs
Skyrmion fluctuations at a first-order phase transition boundary
Magnetic skyrmions are topologically protected spin textures with promising prospects for applications in data storage. They can form a lattice state due to competing magnetic interactions and are commonly found in a small region of the temperature - magnetic field phase diagram. Recent work has demonstrated that these magnetic quasi-particles fluctuate at the μeV energy scale. Here, we use a coherent x-ray correlation method at an x-ray free-electron laser to investigate these fluctuations in a magnetic phase coexistence region near a first-order transition boundary where fluctuations are not expected to play a major role. Surprisingly, we find that the relaxation of the intermediate scattering function at this transition differs significantly compared to that deep in the skyrmion lattice phase. The observation of a compressed exponential behavior suggests solid-like dynamics, often associated with jamming. We assign this behavior to disorder and the phase coexistence observed in a narrow field-window near the transition, which can cause fluctuations that lead to glassy behavior
Manipulating topological states by imprinting non-collinear spin textures
Topological magnetic states, such as chiral skyrmions, are of great scientific interest and show huge potential for novel spintronics applications, provided their topological charges can be fully controlled. So far skyrmionic textures have been observed in noncentrosymmetric crystalline materials with low symmetry and at low temperatures. We propose theoretically and demonstrate experimentally the design of spin textures with topological charge densities that can be tailored at ambient temperatures. Tuning the interlayer coupling in vertically stacked nanopatterned magnetic heterostructures, such as a model system of a Co/Pd multilayer coupled to Permalloy, the in-plane non-collinear spin texture of one layer can be imprinted into the out-of-plane magnetised material. We observe distinct spin textures, e.g. vortices, magnetic swirls with tunable opening angle, donut states and skyrmion core configurations. We show that applying a small magnetic field, a reliable switching between topologically distinct textures can be achieved at remanence
Error quantification in multi-parameter mapping facilitates robust estimation and enhanced group level sensitivity
Multi-Parameter Mapping (MPM) is a comprehensive quantitative neuroimaging protocol that enables estimation of four physical parameters (longitudinal and effective transverse relaxation rates and , proton density , and magnetization transfer saturation ) that are sensitive to microstructural tissue properties such as iron and myelin content. Their capability to reveal microstructural brain differences, however, is tightly bound to controlling random noise and artefacts (e.g. caused by head motion) in the signal. Here, we introduced a method to estimate the local error of , and maps that captures both noise and artefacts on a routine basis without requiring additional data. To investigate the method's sensitivity to random noise, we calculated the model-based signal-to-noise ratio (mSNR) and showed in measurements and simulations that it correlated linearly with an experimental raw-image-based SNR map. We found that the mSNR varied with MPM protocols, magnetic field strength (3T vs. 7T) and MPM parameters: it halved from to and decreased from to by a factor of 3-4. Exploring the artefact-sensitivity of the error maps, we generated robust MPM parameters using two successive acquisitions of each contrast and the acquisition-specific errors to down-weight erroneous regions. The resulting robust MPM parameters showed reduced variability at the group level as compared to their single-repeat or averaged counterparts. The error and mSNR maps may better inform power-calculations by accounting for local data quality variations across measurements. Code to compute the mSNR maps and robustly combined MPM maps is available in the open-source hMRI toolbox
- …