246 research outputs found
Local properties of extended self-similarity in 3D turbulence
Using a generalization of extended self-similarity we have studied local
scaling properties of 3D turbulence in a direct numerical simulation. We have
found that these properties are consistent with lognormal-like behavior of
energy dissipation fluctuations with moderate amplitudes for space scales
beginning from Kolmogorov length up to the largest scales, and in the
whole range of the Reynolds numbers: . The
locally determined intermittency exponent varies with ; it has a
maximum at scale , independent of .Comment: 4 pages, 5 figure
Mean- Field Approximation and Extended Self-Similarity in Turbulence
Recent experimental discovery of extended self-similarity (ESS) was one of
the most interesting developments, enabling precise determination of the
scaling exponents of fully developed turbulence. Here we show that the ESS is
consistent with the Navier-Stokes equations, provided the pressure -gradient
contributions are expressed in terms of velocity differences in the mean field
approximation (Yakhot, Phys.Rev. E{\bf 63}, 026307, (2001)). A sufficient
condition for extended self-similarity in a general dynamical systemComment: 8 pages, no figure
Recommended from our members
Validation of an STR peak area model
In analyzing a DNA mixture sample, the measured peak areas of alleles of STR markers amplified using the polymerase chain-reaction (PCR) technique provide valuable information concerning the relative amounts of DNA originating from each contributor to the mixture. This information can be exploited for the purpose of trying to predict the genetic profiles of those contributors whose genetic profiles are not known. The task is non-trivial, in part due to the need to take into account the stochastic nature of peak area values. Various methods have been proposed suggesting ways in which this may be done. One recent suggestion is a probabilistic expert system model that uses gamma distributions to model the size and stochastic variation in peak area values. In this paper we carry out a statistical analysis of the gamma distribution assumption, testing the assumption against synthetic peak area values computer generated using an independent model that simulates the PCR amplification process. Our analysis shows the gamma assumption works very well when allelic dropout is not present, but performs less and less well as dropout becomes more and more of an issue, such as occurs, for example, in Low Copy Template amplifications
Passive Scalar: Scaling Exponents and Realizability
An isotropic passive scalar field advected by a rapidly-varying velocity
field is studied. The tail of the probability distribution for
the difference in across an inertial-range distance is found
to be Gaussian. Scaling exponents of moments of increase as
or faster at large order , if a mean dissipation conditioned on is
a nondecreasing function of . The computed numerically
under the so-called linear ansatz is found to be realizable. Some classes of
gentle modifications of the linear ansatz are not realizable.Comment: Substantially revised to conform with published version. Revtex (4
pages) with 2 postscript figures. Send email to [email protected]
A scaling theory of 3D spinodal turbulence
A new scaling theory for spinodal decomposition in the inertial hydrodynamic
regime is presented. The scaling involves three relevant length scales, the
domain size, the Taylor microscale and the Kolmogorov dissipation scale. This
allows for the presence of an inertial "energy cascade", familiar from theories
of turbulence, and improves on earlier scaling treatments based on a single
length: these, it is shown, cannot be reconciled with energy conservation. The
new theory reconciles the t^{2/3} scaling of the domain size, predicted by
simple scaling, with the physical expectation of a saturating Reynolds number
at late times.Comment: 5 pages, no figures, revised version submitted to Phys Rev E Rapp
Comm. Minor changes and clarification
Periodically kicked turbulence
Periodically kicked turbulence is theoretically analyzed within a mean field
theory. For large enough kicking strength A and kicking frequency f the
Reynolds number grows exponentially and then runs into some saturation. The
saturation level can be calculated analytically; different regimes can be
observed. For large enough Re we find the saturation level to be proportional
to A*f, but intermittency can modify this scaling law. We suggest an
experimental realization of periodically kicked turbulence to study the
different regimes we theoretically predict and thus to better understand the
effect of forcing on fully developed turbulence.Comment: 4 pages, 3 figures. Phys. Rev. E., in pres
A new scaling property of turbulent flows
We discuss a possible theoretical interpretation of the self scaling property
of turbulent flows (Extended Self Similarity). Our interpretation predicts
that, even in cases when ESS is not observed, a generalized self scaling, must
be observed. This prediction is checked on a number of laboratory experiments
and direct numerical simulations.Comment: Plain Latex, 1 figure available upon request to
[email protected]
Dissipative chaotic scattering
We show that weak dissipation, typical in realistic situations, can have a
metamorphic consequence on nonhyperbolic chaotic scattering in the sense that
the physically important particle-decay law is altered, no matter how small the
amount of dissipation. As a result, the previous conclusion about the unity of
the fractal dimension of the set of singularities in scattering functions, a
major claim about nonhyperbolic chaotic scattering, may not be observable.Comment: 4 pages, 2 figures, revte
ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes
ChIP-on-chip has emerged as a powerful tool to dissect the complex network of regulatory interactions between transcription factors and their targets. However, most ChIP-on-chip analysis methods use conservative approaches aimed to minimize false-positive transcription factor targets. We present a model with improved sensitivity in detecting binding events from ChIP-on-chip data. Biochemically validated analysis in human T-cells reveals that three transcription factor oncogenes, NOTCH1, MYC, and HES1, bind one order of magnitude more promoters than previously thought. Gene expression profiling upon NOTCH1 inhibition shows broad-scale functional regulation across the entire range of predicted target genes, establishing a closer link between occupancy and regulation. Finally, the resolution of a more complete map of transcriptional targets reveals that MYC binds nearly all promoters bound by NOTCH1. Overall, these results suggest an unappreciated complexity of transcriptional regulatory networks and highlight the fundamental importance of genome-scale analysis to represent transcriptional programs
- âŠ