Abstract

An isotropic passive scalar field TT advected by a rapidly-varying velocity field is studied. The tail of the probability distribution P(θ,r)P(\theta,r) for the difference θ\theta in TT across an inertial-range distance rr is found to be Gaussian. Scaling exponents of moments of θ\theta increase as n\sqrt{n} or faster at large order nn, if a mean dissipation conditioned on θ\theta is a nondecreasing function of θ|\theta|. The P(θ,r)P(\theta,r) computed numerically under the so-called linear ansatz is found to be realizable. Some classes of gentle modifications of the linear ansatz are not realizable.Comment: Substantially revised to conform with published version. Revtex (4 pages) with 2 postscript figures. Send email to [email protected]

    Similar works

    Available Versions

    Last time updated on 05/06/2019