285 research outputs found

    The prevalence and properties of cold gas inflows and outflows around galaxies in the local Universe

    Get PDF
    We perform a stacking analysis of the neutral \nad\,λλ\lambda\lambda5889,5895\,\AA\ ISM doublet using the SDSS DR7 spectroscopic data set to probe the prevalence and characteristics of cold (T\,\lesssim\,104^{4}\,K) galactic-scale gas flows in local (0.025z\leqslant z\leqslant0.1) inactive and AGN-host galaxies across the SFR-M_{*} plane. We find low-velocity outflows to be prevalent in regions of high SFRs and stellar masses (10 \lesssimlog M_{*}/M_{\odot} \lesssim 11.5), however we do not find any detections in the low mass (log M_{*}/M_{\odot} \lesssim 10) regime. We also find tentative detections of inflowing gas in high mass galaxies across the star-forming population. We derive mass outflow rates in the range of 0.14-1.74\,M_{\odot}yr1^{-1} and upper limits on inflow rates <1\,M_{\odot}yr1^{-1}, allowing us to place constraints on the mass loading factor (η\eta=M˙out\dot{M}_{\text{out}}/SFR) for use in simulations of the local Universe. We discuss the fate of the outflows by comparing the force provided by the starburst to the critical force needed to push the outflow outward, and find the vast majority of the outflows unlikely to escape the host system. Finally, as outflow detection rates and central velocities do not vary strongly with the presence of a (weak) active supermassive black hole, we determine that star formation appears to be the primary driver of outflows at zz\sim0.Comment: Accepted in MNRAS. 36 pages, 15 figure

    The Arecibo Legacy Fast ALFA Survey: VIII. HI Source Catalog of the Anti-Virgo Region at dec = +25 deg

    Full text link
    We present a fourth catalog of HI sources from the Arecibo Legacy Fast ALFA (ALFALFA) Survey. We report 541 detections over 136 deg2, within the region of the sky having 22h < R.A. < 03h and 24 deg < Dec. < 26 deg . This complements a previous catalog in the region 26 deg < Dec. < 28 deg (Saintonge et al. 2008). We present here the detections falling into three classes: (a) extragalactic sources with S/N > 6.5, where the reliability of the catalog is better than 95%; (b) extragalactic sources 5.0 < S/N < 6.5 and a previously measured optical redshift that corroborates our detection; or (c) High Velocity Clouds (HVCs), or subcomponents of such clouds, in the periphery of the Milky Way. Of the 541 objects presented here, 90 are associated with High Velocity Clouds, while the remaining 451 are identified as extragalactic objects. Optical counterparts have been matched with all but one of the extragalactic objects.Comment: 26 pages, 5 figures, 1 table, accepted for publication in Astrophysical Journal Supplement Serie

    Catalog of Galaxy Morphology in Four Rich Clusters: Luminosity Evolution of Disk Galaxies at 0.33<z<0.83

    Full text link
    Hubble Space Telescope (HST) imaging of four rich, X-ray luminous, galaxy clusters (0.33<z<0.83) is used to produce quantitative morphological measurements for galaxies in their fields. Catalogs of these measurements are presented for 1642 galaxies brighter than F814W(AB)=23.0 . Galaxy luminosity profiles are fitted with three models: exponential disk, de Vaucouleurs bulge, and a disk-plus-bulge hybrid model. The best fit is selected and produces a quantitative assessment of the morphology of each galaxy: the principal parameters derived being B/T, the ratio of bulge to total luminosity, the scale lengths and half-light radii, axial ratios, position angles and surface brightnesses of each component. Cluster membership is determined using a statistical correction for field galaxy contamination, and a mass normalization factor (mass within boundaries of the observed fields) is derived for each cluster. In the present paper, this catalog of measurements is used to investigate the luminosity evolution of disk galaxies in the rich-cluster environment. Examination of the relations between disk scale-length and central surface brightness suggests, under the assumption that these clusters represent a family who share a common evolutionary history and are simply observed at different ages, that there is a dramatic change in the properties of the small disks (h < 2 kpc). This change is best characterized as a change in surface brightness by about 1.5 magnitude between z=0.3 and z=0.8 with brighter disks at higher redshifts.Comment: 53 pages, including 13 figures and 7 tables. Accepted for publication in the Astrophysical Journal Supplement Serie

    The GALEX Arecibo SDSS Survey. VI. Second Data Release and Updated Gas Fraction Scaling Relations

    Full text link
    We present the second data release from the GALEX Arecibo SDSS Survey (GASS), an ongoing large Arecibo program to measure the HI properties for an unbiased sample of ~1000 galaxies with stellar masses greater than 10^10 Msun and redshifts 0.025<z<0.05. GASS targets are selected from the Sloan Digital Sky Survey (SDSS) spectroscopic and Galaxy Evolution Explorer (GALEX) imaging surveys, and are observed until detected or until a gas mass fraction limit of a few per cent is reached. This second data installment includes new Arecibo observations of 240 galaxies, and marks the 50% of the complete survey. We present catalogs of the HI, optical and ultraviolet parameters for these galaxies, and their HI-line profiles. Having more than doubled the size of the sample since the first data release, we also revisit the main scaling relations of the HI mass fraction with galaxy stellar mass, stellar mass surface density, concentration index, and NUV-r color, as well as the gas fraction plane introduced in our earlier work.Comment: 30 pages, 12 figures. Accepted for publication in A&A. Version with complete Appendix A available at http://www.mpa-garching.mpg.de/GASS/pubs.php . GASS released data can be found at http://www.mpa-garching.mpg.de/GASS/data.ph

    Geometrical tests of cosmological models. III. The cosmology-evolution diagram at z=1

    Full text link
    The rotational velocity of distant galaxies, when interpreted as a size (luminosity) indicator, may be used as a tool to select high redshift standard rods (candles) and probe world models and galaxy evolution via the classical angular diameter-redshift or Hubble diagram tests. We implement the proposed testing strategy using a sample of 30 rotators spanning the redshift range 0.2<z<1 with high resolution spectra and images obtained by the VIMOS/VLT Deep Redshift Survey (VVDS) and the Great Observatories Origins Deep Survey (GOODs). We show that by applying at the same time the angular diameter-redshift and Hubble diagrams to the same sample of objects (i.e. velocity selected galactic discs) one can derive a characteristic chart, the cosmology-evolution diagram, mapping the relation between global cosmological parameters and local structural parameters of discs such as size and luminosity. This chart allows to put constraints on cosmological parameters when general prior information about discs evolution is available. In particular, by assuming that equally rotating large discs cannot be less luminous at z=1 than at present (M(z=1) < M(0)), we find that a flat matter dominated cosmology (Omega_m=1) is excluded at a confidence level of 2sigma and an open cosmology with low mass density (Omega_m = 0.3) and no dark energy contribution is excluded at a confidence level greater than 1 sigma. Inversely, by assuming prior knowledge about the cosmological model, the cosmology-evolution diagram can be used to gain useful insights about the redshift evolution of the structural parameters of baryonic discs hosted in dark matter halos of nearly equal masses.Comment: 14 pages and 11 figures. A&A in pres

    Spatial correlation between dust and Hα emission in dwarf irregular galaxies

    Get PDF
    Using a sample of dwarf irregular galaxies selected from the ALFALFA blind H i-survey and observed using the VIMOS IFU, we investigate the relationship between Hα emission and Balmer optical depth (τb{\tau }_{{\rm{b}}}). We find a positive correlation between Hα luminosity surface density and Balmer optical depth in 8 of 11 at ≥0.8σ significance (6 of 11 at ≥1.0σ) galaxies. Our spaxels have physical scales ranging from 30 to 80 pc, demonstrating that the correlation between these two variables continues to hold down to spatial scales as low as 30 pc. Using the Spearman's rank correlation coefficient to test for correlation between ΣHα{{\rm{\Sigma }}}_{{\rm{H}}\alpha } and τb{\tau }_{{\rm{b}}} in all the galaxies combined, we find ρ=0.39\rho =0.39, indicating a positive correlation at 4σ significance. Our low stellar-mass galaxy results are in agreement with observations of emission line regions in larger spiral galaxies, indicating that this relationship is independent of the size of the galaxy hosting the emission line region. The positive correlation between Hα luminosity and Balmer optical depth within spaxels is consistent with the hypothesis that young star-forming regions are surrounded by dusty birth-clouds

    The Properties of the Circumgalactic Medium in Red and Blue Galaxies: Results from the COS-GASS+COS-HALOS Surveys

    Get PDF
    We use the combined data from the COS-GASS and COS-Halos surveys to characterize the Circum-Galactic Medium (CGM) surrounding typical low-redshift galaxies in the mass range M109.511.5M{M}_{* }\sim \,{10}^{9.5-11.5}\,{M}_{\odot }, and over a range of impact parameters extending to just beyond the halo virial radius (R vir). We find the radial scale length of the distributions of the equivalent widths of the Lyα and Si iii absorbers to be ~1 and ~0.4 R vir, respectively. The radial distribution of equivalent widths is relatively uniform for the blue galaxies, but highly patchy (i.e., it has a low covering fraction) for the red galaxies. We also find that the Lyα and Si iii equivalent widths show significant positive correlations with the specific star formation rate (sSFR) of the galaxy. We find a surprising lack of correlations between the halo mass (virial velocity) and either the velocity dispersions or velocity offsets of the Lyα lines. The ratio of the velocity offset to the velocity dispersion for the Lyα absorbers has a mean value of ~4, suggesting that a given line of sight is intersecting a dynamically coherent structure in the CGM, rather than a sea of orbiting clouds. The kinematic properties of the CGM are similar in the blue and red galaxies, although we find that a significantly larger fraction of the blue galaxies have large Lyα velocity offsets (>200 km s−1). We show that—if the CGM clouds represent future fuel for star formation—our new results could imply a large drop in the sSFR across the galaxy mass-range we probe

    Dust temperature and CO-to-H2 conversion factor variations in the SFR-M* plane

    Full text link
    Deep Herschel imaging and 12CO(2-1) line luminosities from the IRAM PdBI are combined for a sample of 17 galaxies at z>1 from the GOODS-N field. The sample includes galaxies both on and above the main sequence (MS) traced by star-forming galaxies in the SFR-M* plane. The far-infrared data are used to derive dust masses, Mdust. Combined with an empirical prescription for the dependence of the gas-to-dust ratio on metallicity (GDR), the CO luminosities and Mdust values are used to derive for each galaxy the CO-to-H2 conversion factor, alpha_co. Like in the local Universe, the value of alpha_co is a factor of ~5 smaller in starbursts compared to normal star-forming galaxies (SFGs). We also uncover a relation between alpha_co and dust temperature (Tdust; alpha_co decreasing with increasing Tdust) as obtained from modified blackbody fits to the far-infrared data. While the absolute normalization of the alpha_co(Tdust) relation is uncertain, the global trend is robust against possible systematic biases in the determination of Mdust, GDR or metallicity. Although we cannot formally distinguish between a step and a smooth evolution of alpha_co with the dust temperature, we can conclude that in galaxies of near-solar metallicity, a critical value of Tdust=30K can be used to determine whether the appropriate alpha_co is closer to the starburst value (1.0 Msun(K kms pc^2)^-1, if Tdust>30K) or closer to the Galactic value (4.35 Msun (K kms pc^2)^-1, if Tdust<30K). This indicator has the great advantage of being less subjective than visual morphological classifications of mergers/SFGs, which can be difficult at high z because of the clumpy nature of SFGs. In the absence of far-infrared data, the offset of a galaxy from the main sequence (i.e., log[SSFR(galaxy)/SSFR_MS(M*,z)]) can be used to identify galaxies requiring the use of an alpha_co conversion factor lower than the Galactic value.Comment: Accepted for publication in Astronomy and Astrophysics (A&A); 15 pages, 6 figures; V2: updated reference lis

    Deriving a multivariate CO-to-H2_2 conversion function using the [CII]/CO(1-0) ratio and its application to molecular gas scaling relations

    Get PDF
    We present Herschel PACS observations of the [CII] 158 micron emission line in a sample of 24 intermediate mass (9<logM_\ast/M_\odot<10) and low metallicity (0.4< Z/Z_\odot<1.0) galaxies from the xCOLD GASS survey. Combining them with IRAM CO(1-0) measurements, we establish scaling relations between integrated and molecular region [CII]/CO(1-0) luminosity ratios as a function of integrated galaxy properties. A Bayesian analysis reveals that only two parameters, metallicity and offset from the star formation main sequence, Δ\DeltaMS, are needed to quantify variations in the luminosity ratio; metallicity describes the total dust content available to shield CO from UV radiation, while Δ\DeltaMS describes the strength of this radiation field. We connect the [CII]/CO luminosity ratio to the CO-to-H2_2 conversion factor and find a multivariate conversion function αCO\alpha_{CO}, which can be used up to z~2.5. This function depends primarily on metallicity, with a second order dependence on Δ\DeltaMS. We apply this to the full xCOLD GASS and PHIBSS1 surveys and investigate molecular gas scaling relations. We find a flattening of the relation between gas mass fraction and stellar mass at logM_\ast/M_\odot<10. While the molecular gas depletion time varies with sSFR, it is mostly independent of mass, indicating that the low LCO_{CO}/SFR ratios long observed in low mass galaxies are entirely due to photodissociation of CO, and not to an enhanced star formation efficiency.Comment: Submitted to MNRAS, this version after referee comments. 21 page
    corecore