1,613 research outputs found

    Connecting species’ geographical distributions to environmental variables: range maps versus observed points of occurrence

    Get PDF
    Connecting the geographical occurrence of a species with underlying environmental variables is fundamental for many analyses of life history evolution and for modeling species distributions for both basic and practical ends. However, raw distributional information comes principally in two forms: points of occurrence (specific geographical coordinates where a species has been observed), and expert-prepared range maps. Each form has potential short-comings: range maps tend to overestimate the true occurrence of a species, whereas occurrence points (because of their frequent non-random spatial distribution) tend to underestimate it. Whereas previous comparisons of the two forms have focused on how they may differ when estimating species richness, less attention has been paid to the extent to which the two forms actually differ in their representation of a species’ environmental associations. We assess such differences using the globally distributed avian order Galliformes (294 species). For each species we overlaid range maps obtained from IUCN and point-of-occurrence data obtained from GBIF on global maps of four climate variables and elevation. Over all species, the median difference in distribution centroids was 234 km, and median values of all five environmental variables were highly correlated, although there were a few species outliers for each variable. We also acquired species’ elevational distribution mid-points (mid-point between minimum and maximum elevational extent) from the literature; median elevations from point occurrences and ranges were consistently lower (median −420 m) than mid-points. We concluded that in most cases occurrence points were likely to produce better estimates of underlying environmental variables than range maps, although differences were often slight. We also concluded that elevational range mid-points were biased high, and that elevation distributions based on either points or range maps provided better estimates

    Your professionalism is not my professionalism:congruence and variance in the views of medical students and faculty about professionalism

    Get PDF
    Abstract Background Medical professionalism is an essential aspect of medical education and practice worldwide and it must be adopted according to different social and cultural contexts. We examined the current congruence and variance in the perception of professionalism in undergraduate medical students and faculty members in one medical school in Saudi Arabia. Methods The target population was first year to final year medical students of College of Medicine, King Saud University. Out of a total of 1431 students at College of Medicine 750 students (52 %) participated in the study. Fifty faculty members from clinical and non-clinical departments of the College of Medicine were randomly selected for this study and all participated in the study. The respondents recorded their responses through the Bristol online survey system, using a bilingual (English and Arabic) version of the Dundee Polyprofessionalism Inventory I: Academic integrity, which has 34 items. Results There are 17 lapses (50 % of the total) in professional behaviour where none of the faculty recommend the ignore sanction while students recommended a variable ignore sanction in a range of 6–29 % for different behaviours. Students and faculty recommended similar sanctions for 5 lapses (14.7 % of the total) in professional behaviours. Furthermore, there is statistically significant two level difference between the sanctions approved by faculty and students in the recommended sanctions for 12 lapses (35 % of the total (p < 0.050). Conclusions These results raised concerns in relation to the students’ understanding of professionalism. It is therefore, important to enhance their learning around the attributes of medical professionalism

    Greenhouse gas network design using backward Lagrangian particle dispersion modelling &minus; Part 1: Methodology and Australian test case

    Get PDF
    This paper describes the generation of optimal atmospheric measurement networks for determining carbon dioxide fluxes over Australia using inverse methods. A Lagrangian particle dispersion model is used in reverse mode together with a Bayesian inverse modelling framework to calculate the relationship between weekly surface fluxes, comprising contributions from the biosphere and fossil fuel combustion, and hourly concentration observations for the Australian continent. Meteorological driving fields are provided by the regional version of the Australian Community Climate and Earth System Simulator (ACCESS) at 12 km resolution at an hourly timescale. Prior uncertainties are derived on a weekly timescale for biosphere fluxes and fossil fuel emissions from high-resolution model runs using the Community Atmosphere Biosphere Land Exchange (CABLE) model and the Fossil Fuel Data Assimilation System (FFDAS) respectively. The influence from outside the modelled domain is investigated, but proves to be negligible for the network design. Existing ground-based measurement stations in Australia are assessed in terms of their ability to constrain local flux estimates from the land. We find that the six stations that are currently operational are already able to reduce the uncertainties on surface flux estimates by about 30%. A candidate list of 59 stations is generated based on logistic constraints and an incremental optimisation scheme is used to extend the network of existing stations. In order to achieve an uncertainty reduction of about 50%, we need to double the number of measurement stations in Australia. Assuming equal data uncertainties for all sites, new stations would be mainly located in the northern and eastern part of the continent

    Parasite infections in a social carnivore: Evidence of their fitness consequences and factors modulating infection load

    Get PDF
    There are substantial individual differences in parasite composition and infection load in wildlife populations. Few studies have investigated the factors shaping this heterogeneity in large wild mammals or the impact of parasite infections on Darwinian fitness, particularly in juveniles. A host's parasite composition and infection load can be shaped by factors that determine contact with infective parasite stages and those that determine the host's resistance to infection, such as abiotic and social environmental factors, and age. Host–parasite interactions and synergies between coinfecting parasites may also be important. We test predictions derived from these different processes to investigate factors shaping infection loads (fecal egg/oocyte load) of two energetically costly gastrointestinal parasites: the hookworm Ancylostoma and the intracellular Cystoisospora, in juvenile spotted hyenas (Crocuta crocuta) in the Serengeti National Park, in Tanzania. We also assess whether parasite infections curtail survival to adulthood and longevity. Ancylostoma and Cystoisospora infection loads declined as the number of adult clan members increased, a result consistent with an encounter‐reduction effect whereby adults reduced encounters between juveniles and infective larvae, but were not affected by the number of juveniles in a clan. Infection loads decreased with age, possibly because active immune responses to infection improved with age. Differences in parasite load between clans possibly indicate variation in abiotic environmental factors between clan den sites. The survival of juveniles (<365 days old) to adulthood decreased with Ancylostoma load, increased with age, and was modulated by maternal social status. High‐ranking individuals with low Ancylostoma loads had a higher survivorship during the first 4 years of life than high‐ranking individuals with high Ancylostoma loads. These findings suggest that high infection loads with energetically costly parasites such as hookworms during early life can have negative fitness consequences

    Negative phenotypic and genetic associations between copulation duration and longevity in male seed beetles

    Get PDF
    Reproduction can be costly and is predicted to trade-off against other characters. However, while these trade-offs are well documented for females, there has been less focus on aspects of male reproduction. Furthermore, those studies that have looked at males typically only investigate phenotypic associations, with the underlying genetics often ignored. Here, we report on phenotypic and genetic trade-offs in male reproductive effort in the seed beetle, Callosobruchus maculatus. We find that the duration of a male's first copulation is negatively associated with subsequent male survival, phenotypically and genetically. Our results are consistent with life-history theory and suggest that like females, males trade-off reproductive effort against longevity

    The DREEM, part 1: measurement of the educational environment in an osteopathy teaching program

    Get PDF
    Background Measurement of the educational environment has become more common in health professional education programs. Information gained from these investigations can be used to implement and measure changes to the curricula, educational delivery and the physical environment. A number of questionnaires exist to measure the educational environment, and the most commonly utilised of these is the Dundee Ready Educational Environment Measure (DREEM). Methods The DREEM was administered to students in all year levels of the osteopathy program at Victoria University (VU), Melbourne, Australia. Students also completed a demographic survey. Inferential and correlational statistics were employed to investigate the educational environment based on the scores obtained from the DREEM. Results A response rate of 90% was achieved. The mean total DREEM score was 135.37 (+/- 19.33) with the scores ranging from 72 to 179. Some subscales and items demonstrated differences for gender, clinical phase, age and whether the student was in receipt of a government allowance. Conclusions There are a number of areas in the program that are performing well, and some aspects that could be improved. Overall students rated the VU osteopathy program as more positive than negative. The information obtained in the present study has identified areas for improvement and will enable the program leaders to facilitate changes. It will also provide other educational institutions with data on which they can make comparisons with their own programs

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    Postcopulatory sexual selection

    Get PDF
    The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes

    The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.Extreme variability of the winter- and spring-time stratospheric polar vortex has been shown to affect extratropical tropospheric weather. Therefore, reducing stratospheric forecast error may be one way to improve the skill of tropospheric weather forecasts. In this review, the basis for this idea is examined. A range of studies of different stratospheric extreme vortex events shows that they can be skilfully forecasted beyond 5 days and into the sub-seasonal range (0–30 days) in some cases. Separate studies show that typical errors in forecasting a stratospheric extreme vortex event can alter tropospheric forecast skill by 5–7% in the extratropics on sub-seasonal time-scales. Thus understanding what limits stratospheric predictability is of significant interest to operational forecasting centres. Both limitations in forecasting tropospheric planetary waves and stratospheric model biases have been shown to be important in this context.This work is supported by the Natural Environmental Research Council (NERC) funded project Stratospheric Network for the Assessment of Predictability (SNAP) (Grant H5147600) and partially supported by the SPARC. ACP and RGH acknowledge funding through the EU ARISE project (Grant 284387) (EU-FP7). We also acknowledge Steven Pawson and Lawrence Coy from NASA for providing Figure 1. We wish to thank Lorenzo Polvani from Columbia University for providing Figure 4 and Amy Butler from NOAA for her contribution to Figure 5. We thank Adrian Simmons of ECMWF for his insightful review and two anonymous reviewers for their comments and suggestions that improved the quality of the manuscript
    corecore