20,787 research outputs found
Simultaneous analysis of elastic scattering and transfer/breakup channels for the 6He+208Pb reaction at energies near the Coulomb barrier
The elastic and alpha-production channels for the 6He+208Pb reaction are
investigated at energies around the Coulomb barrier (E_{lab}=14, 16, 18, 22,
and 27 MeV). The effect of the two-neutron transfer channels on the elastic
scattering has been studied within the Coupled-Reaction-Channels (CRC) method.
We find that the explicit inclusion of these channels allows a simultaneous
description of the elastic data and the inclusive alpha cross sections at
backward angles. Three-body Continuum-Discretized Coupled-Channels (CDCC)
calculations are found to reproduce the elastic data, but not the
transfer/breakup data. The trivially-equivalent local polarization potential
(TELP) derived from the CRC and CDCC calculations are found to explain the
features found in previous phenomenological optical model calculations for this
system.Comment: 7 pages, 6 figures (replaced with updated version
Robust modelling and tracking of NonRigid objects using Active-GNG
This paper presents a robust approach to nonrigid modelling and tracking. The contour of the object is described by an active growing neural gas (A-GNG) network which allows the model to re-deform locally. The approach is novel in that the nodes of the network are described by their geometrical position, the underlying local feature structure of the image, and the distance vector between the modal image and any successive images. A second contribution is the correspondence of the nodes which is measured through the calculation of the topographic product, a topology preserving objective function which quantifies the neighbourhood preservation before and after the mapping. As a result, we can achieve the automatic modelling and tracking of objects without using any annotated training sets. Experimental results have shown the superiority of our proposed method over the original growing neural gas (GNG) network
Nanotoxicity and life cycle assessment: First attempt towards the determination of characterization factors for carbon nanotubes
Carbon materials, whether at macro, micro or at nanoscale, play an important role in the battery industry, as they can be used as electrodes, electrode enhancers, bipolar separators, or current collectors. When conducting a Life Cycle Assessment (LCA) of novel batteries manufacturing processes, we also need to consider the fate of potentially emitted carbon based nanomaterials. However, the knowledge generated in the last decade regarding the behavior of such materials in the environment and its toxicological effects has yet to be included in the Life Cycle Impact Assessment (LCIA) methodologies. Conventional databases of chemical products (e.g. ECHA, ECOTOX) offer little information regarding engineered nanomaterials (ENM). It is thus necessary to go one step further and compile physicochemical and toxicological data directly from scientific literature. Such studies do not only differ in their results, but also in their methodologies, and several calls have been made towards a more consistent approach that would allow us model the fate of ENM in the environment as well as their potentially harmful effects. Trying to overcome these limitations we have developed a tool based on Microsoft Excel® combining several methods for the estimation of physicochemical properties of carbon nanotubes (CNT). The information generated with this tool is combined with degradation rates and toxicological data consistent with the methods followed by the USEtox methodology. Thus, it is possible to calculate the characterization factors of CNTs and integrate them as a first proxy in future LCA of products including these ENM
Developmental effects in the online use of morphosyntactic cues in sentence processing: Evidence from Tagalog
Children must necessarily process their input in order to learn it, yet the architecture of the developing parsing system and how it interfaces with acquisition is unclear. In the current paper we report experimental and corpus data investigating adult and children's use of morphosyntactic cues for making incremental online predictions of thematic roles in Tagalog, a verb-initial symmetrical voice language of the Philippines. In Study 1, Tagalog-speaking adults completed a visual world eye-tracking experiment in which they viewed pictures of causative actions that were described by transitive sentences manipulated for voice and word order. The pattern of results showed that adults process agent and patient voice differently, predicting the upcoming noun in the patient voice but not in the agent voice, consistent with the observation of a patient voice preference in adult sentence production. In Study 2, our analysis of a corpus of child-directed speech showed that children heard more patient voice- than agent voice-marked verbs. In Study 3, 5-, 7-, and 9-year-old children completed a similar eye-tracking task as used in Study 1. The overall pattern of results suggested that, like the adults in Study 1, children process agent and patient voice differently in a manner that reflects the input distributions, with children developing towards the adult state across early childhood. The results are most consistent with theoretical accounts that identify a key role for input distributions in acquisition and language processin
Ireland and Brexit: Modelling the impact of deal and no-deal scenarios. Quarterly Economic Commentary Special Article, Spring 2019.
This Article attempts to quantify the macroeconomic impact of Brexit on the Irish economy. Given both the political and economic uncertainty, we consider a range of alternative scenarios. We focus on the most well understood channels through which Brexit will affect Ireland, namely though lower trade, incorporating the impact of tariff and non-tariff measures, and the potentially positive impact of FDI diversion to Ireland. Our approach, and the main contribution of this paper, is to build up estimates of each of these channels from a range of recent micro-economic studies, so our estimates are anchored in the empirical literature. We then use these micro-estimates to calibrate macro scenarios; specifically we generate alternative paths for the UK and international economy using the NiGEM global model and assess the impact on Ireland using the COSMO model. Overall, in each scenario, the level of Irish output is permanently below where it otherwise would have been were the UK to decide to remain in the EU
Interfering Channel Estimation for Radar and Communication Coexistence
We investigate the interfering channel estimation in radar and communication coexistence, where a multi-input-multi-output (MIMO) radar is operated in a “search and track” mode, and a MIMO base station (BS) is attempting to acquire the interfering channel state information (ICSI) between them, which is required for the precoding designs. In contrast to conventional training based techniques, we exploit radar probing waveforms as pilot signals, which requires no coordination between the systems. As the radar randomly transmits searching and tracking waveforms, it is challenging for the BS to directly obtain the ICSI. We therefore propose a Rao test approach to firstly identify the working mode of the radar, and then estimate the channel. We further provide theoretical performance analysis for the Rao detector. Finally, we assess the effectiveness of the proposed approach by numerical simulations, which show that the BS is able to estimate the ICSI with limited information from the radar
Candidate Binding Sites for Allosteric Inhibition of the SARS-CoV-2 Main Protease from the Analysis of Large-Scale Molecular Dynamics Simulations
We analyzed a 100 μs MD trajectory of the SARS-CoV-2 main protease by a non-parametric data analysis approach which allows characterizing a free energy landscape as a simultaneous function of hundreds of variables. We identified several conformations that, when visited by the dynamics, are stable for several hundred nanoseconds. We explicitly characterize and describe these metastable states. In some of these configurations, the catalytic dyad is less accessible. Stabilizing them by a suitable binder could lead to an inhibition of the enzymatic activity. In our analysis we keep track of relevant contacts between residues which are selectively broken or formed in the states. Some of these contacts are formed by residues which are far from the catalytic dyad and are accessible to the solvent. Based on this analysis we propose some relevant contact patterns and three possible binding sites which could be targeted to achieve allosteric inhibition
Controllable direction of liquid jets generated by thermocavitation within a droplet.
A high-velocity fluid stream ejected from an orifice or nozzle is a common mechanism to produce liquid jets in inkjet printers or to produce sprays among other applications. In the present research, we show the generation of liquid jets of controllable direction produced within a sessile water droplet by thermocavitation. The jets are driven by an acoustic shock wave emitted by the collapse of a hemispherical vapor bubble at the liquid-solid/substrate interface. The generated shock wave is reflected at the liquid-air interface due to acoustic impedance mismatch generating multiple reflections inside the droplet. During each reflection, a force is exerted on the interface driving the jets. Depending on the position of the generation of the bubble within the droplet, the mechanical energy of the shock wave is focused on different regions at the liquid-air interface, ejecting cylindrical liquid jets at different angles. The ejected jet angle dependence is explained by a simple ray tracing model of the propagation of the acoustic shock wave inside the droplet
TREX-DM: a low background Micromegas-based TPC for low mass WIMP detection
Dark Matter experiments are recently focusing their detection techniques in
low-mass WIMPs, which requires the use of light elements and low energy
threshold. In this context, we present the TREX-DM experiment, a low background
Micromegas-based TPC for low-mass WIMP detection. Its main goal is the
operation of an active detection mass 0.300 kg, with an energy threshold
below 0.4 keVee and fully built with previously selected radiopure materials.
This article describes the actual setup, the first results of the comissioning
in Ar+2\%iCH at 1.2 bar and the future updates for a possible
physics run at the Canfranc Underground Laboratory in 2016. A first background
model is also presented, based on Geant4 simulations and a muon/electron
discrimination method. In a conservative scenario, TREX-DM could be sensitive
to DAMA/LIBRA and other hints of positive WIMPs signals, with some space for
improvement with a neutron/electron discrimination method or the use of other
light gases.Comment: Proceedings of the 7th Symposium on Large TPCs for Low-Energy Rare
Event Detectio
- …