1,023 research outputs found

    A jet model for Galactic black-hole X-ray sources: Some constraining correlations

    Full text link
    Some recent observational results impose significant constraints on all the models that have been proposed to explain the Galactic black-hole X-ray sources in the hard state. In particular, it has been found that during the hard state of Cyg X-1 the power-law photon number spectral index is correlated with the average time lag between hard and soft X-rays. Furthermore, the peak frequencies of the four Lorentzians that fit the observed power spectra are correlated with both the photon index and the time lag. We performed Monte Carlo simulations of Compton upscattering of soft, accretion-disk photons in the jet and computed the time lag between hard and soft photons and the power-law index of the resulting photon number spectra. We demonstrate that our jet model naturally explains the above correlations, with no additional requirements and no additional parameters

    Correlated Timing and Spectral Variations of the Soft X-ray Transient Aquila X-1: Evidence for an Atoll classification

    Get PDF
    Based on Rossi X-ray Timing Explorer data, we discuss the classification of the soft X-ray transient Aquila X-1 in the Z/atoll scheme, and the relation of its kilohertz quasi-periodic oscillations (kHz QPO) properties to the X-ray colors. The color-color diagram shows one elongated ("banana") structure and several "islands" of data points. The power spectra of the island are best represented by a broken power-law, whereas those of the banana by a power-law below ~ 1 Hz plus an exponentially cut-off component at intermediate frequencies (30-60 Hz). The parameters of these two components change in correlation with the position of the source in the color-color diagram. Based on the pattern that the source shows in the color-color diagram and its aperiodic variability we conclude that Aquila X-1 is an atoll source. We have also investigated the possible correlation between the frequency of the kHz QPO and the position of the source in the color-color diagram. The complexity seen in the frequency versus count rate diagram is reduced to a single track when the frequency is plotted against hard or soft color.Comment: 9 pages, 5 figures. Accepted for publication in Ap

    Identification of the optical counterparts of high-mass X-ray binaries through optical photometry and spectroscopy

    Full text link
    We present the results of our search for optical counterparts to high-mass X-ray transient sources discovered by various X-ray missions. We obtained CCD images of the X-ray fields through BVR and Halpha filters in order to identify early-type stars in the R-Halpha versus B-V colour-colour diagram. We also obtained medium-resolution spectroscopy of the candidates in order to confirm the presence of H\alpha emission and perform spectral classification. We report on the discovery of the optical counterparts to two X-ray sources: XTE J1858+034 and IGR J01363+6610, and the follow-up observations of another two, newly identified by our group: SAX J2103.5+4545 and GRO J2058+42. For another source, IGR J00370+6122, we present the first detailed optical spectral analysis. The optical photometry and spectroscopy reveal B-type companions in all five sources; GRO J2058+42, SAX J2103.5+4545 and IGR J01363+6610 are positively identified with Be/X-ray binaries, IGR J00370+6122 with a supergiant X-ray binary, while the nature of XTE J1858+034 is uncertain. We also study the relationship between the optical and X-ray emission during quiescent states.Comment: 10 pages, to be published in A&

    Surface collective modes in the topological insulators Bi2_2Se3_3 and Bi0.5_{0.5}Sb1.5_{1.5}Te3x_{3-x}Sex_{x}

    Get PDF
    We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi2_2Se3_3 and Bi0.5_{0.5}Sb1.5_{1.5}Te3x_{3-x}Sex_{x}. Our goal was to identify the "spin plasmon" predicted by Raghu and co-workers [S. Raghu, et al., Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carrers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface, χ"(q,ω)\chi "(\textbf{q},\omega), at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.Comment: 5 pages, 4 figure

    The X-ray binary 2S0114+650=LSI+65 010:A slow pulsar or tidally-induced pulsations?

    Get PDF
    The X-ray source 2S0114+650=LSI+65 010 is a binary system containing a B-type primary and a low mass companion believed to be a neutron star. The system has three reported periodicities: the orbital period, P{orb}~11.6 d, X-ray flaring with P{flare}~2.7 hr, and a "superorbital" X-ray periodicity P{super}~30.7 d. The objective of this paper is to show that the puzzling periodicities in the system may be explained in the context of scenarios in which tidal interactions drive oscillations in the B-supergiant star. We calculate the solution of the equations of motion for one layer of small surface elements distributed along the equator of the star, as they respond to the forces due to gas pressure, centrifugal, coriolis, viscous forces, and the gravitational forces of both stars. This calculation provides variability timescales that can be compared with the observations. In addition, we use observational data obtained at the Observatorio Astron\'omico Nacional en San Pedro M\'artir (OAN/SPM) between 1993-2004 to determine which of the periodicities may be present in the optical region. We suggest that the tidal oscillations lead to a structured stellar wind which, when fed to the neutron star, produces the X-ray modulations. The connection between the stellar oscillations and the modulation of the mass ejection may lie in the shear energy dissipation generated by the tangential motions that are produced by the tidal interaction, particularly in the tidal bulge region. The tidal oscillation scenario weakens the case for 2S0114+650 containing a magnetar descendent.Comment: 12 pages, 14 figure

    Bright flares from the X-ray pulsar SWIFT J1626.6-5156

    Full text link
    We have performed a timing and spectral analysis of the X-ray pulsar SWIFT J1626.6-5156 during a major X-ray outburst in order to unveil its nature and investigate its flaring activity. Epoch- and pulse-folding techniques were used to derive the spin period. Time-average and pulse-phase spectroscopy were employed to study the spectral variability in the flare and out-of-flare states and energy variations with pulse phase. Power spectra were obtained to investigate the periodic and aperiodic variability. Two large flares, with a duration of ~450 seconds were observed on 24 and 25 December 2005. During the flares, the X-ray intensity increased by a factor of 3.5, while the peak-to-peak pulsed amplitude increased from 45% to 70%. A third, smaller flare of duration ~180 s was observed on 27 December 2005. The flares seen in SWIFT J1626.6-5156 constitute the shortest events of this kind ever reported in a high-mass X-ray binary. In addition to the flaring activity, strong X-ray pulsations with Pspin=15.3714+-0.0003 s characterise the X-ray emission in SWIFT J1626.6-5156. After the major outburst, the light curve exhibits strong long-term variations modulated with a 45-day period. We relate this modulation to the orbital period of the system or to a harmonic. Power density spectra show, in addition to the harmonic components of the pulsation, strong band-limited noise with an integrated 0.01-100 Hz fractional rms of around 40% that increased to 64% during the flares. A weak QPO (fractional rms 4.7%) with characteristic frequency of 1 Hz was detected in the non-flare emission. The timing (short X-ray pulsations, long orbital period) and spectral (power-law with cut off energy and neutral iron line) properties of SWIFT J1626.6-5156 are characteristic of Be/X-ray binaries
    corecore