110 research outputs found

    Modulation of Calcium-Dependent Inactivation of L-Type Ca2+ Channels via β-Adrenergic Signaling in Thalamocortical Relay Neurons

    Get PDF
    Neuronal high-voltage-activated (HVA) Ca2+ channels are rapidly inactivated by a mechanism that is termed Ca2+-dependent inactivation (CDI). In this study we have shown that β-adrenergic receptor (βAR) stimulation inhibits CDI in rat thalamocortical (TC) relay neurons. This effect can be blocked by inhibition of cAMP-dependent protein kinase (PKA) with a cell-permeable inhibitor (myristoylated protein kinase inhibitor-(14–22)-amide) or A-kinase anchor protein (AKAP) St-Ht31 inhibitory peptide, suggesting a critical role of these molecules downstream of the receptor. Moreover, inhibition of protein phosphatases (PP) with okadaic acid revealed the involvement of phosphorylation events in modulation of CDI after βAR stimulation. Double fluorescence immunocytochemistry and pull down experiments further support the idea that modulation of CDI in TC neurons via βAR stimulation requires a protein complex consisting of CaV1.2, PKA and proteins from the AKAP family. All together our data suggest that AKAPs mediate targeting of PKA to L-type Ca2+ channels allowing their phosphorylation and thereby modulation of CDI

    Molecular interactions of FG nucleoporin repeats at high resolution

    Get PDF
    Proteins that contain repeat phenylalanine-glycine (FG) residues phase separate into oncogenic transcription factor condensates in malignant leukaemias, form the permeability barrier of the nuclear pore complex and mislocalize in neurodegenerative diseases. Insights into the molecular interactions of FG-repeat nucleoporins have, however, remained largely elusive. Using a combination of NMR spectroscopy and cryoelectron microscopy, we have identified uniformly spaced segments of transient β-structure and a stable preformed α-helix recognized by messenger RNA export factors in the FG-repeat domain of human nucleoporin 98 (Nup98). In addition, we have determined at high resolution the molecular organization of reversible FG–FG interactions in amyloid fibrils formed by a highly aggregation-prone segment in Nup98. We have further demonstrated that amyloid-like aggregates of the FG-repeat domain of Nup98 have low stability and are reversible. Our results provide critical insights into the molecular interactions underlying the self-association and phase separation of FG-repeat nucleoporins in physiological and pathological cell activities

    The TEEBAgriFood theory of change: from information to action

    Get PDF
    KEY MESSAGES • Information alone often fails to motivate change. Manipulation of data has led consumers to doubt scientific results, serving special interests at the expense of public benefit. Information overload implies the need for synthesis to enable better access and impact. • Rationalizations against the need for change include: fatalism, arguing that business is already changing of its own accord, that cheap food is more important than good food, and that the marketplace will adjust for externalities. • These views do not address the long-term systemic consequences of the global corporate model of food systems in a society that derives calories from corn syrup and protein from hamburger resulting in obesity and disease. • Free market, neoliberal policies are incapable of resolving externalities that affect public goods such as ecosystem services. Faith in the infallibility of the market is a shortcoming of mainstream economics. • Path dependency is a key barrier to change in food systems, causing inertia, but may also lock-in positive systemic change. A science of intentional systemic change is arising, grounded in better understanding of human economic behavior as the basis for collective action. • We espouse not one theory but rather a range of actor-relevant theories of change. • Consumer advocacy can bring businesses to assume greater responsibility for the effects of their actions. This theory of change has found expression in the threat of boycotts and reputational risk. • Certification has led to improvement in production practice within market niches but its true success begins when it pressures change in policy and practice throughout supply chains. • Governance of intentional transformation in food systems requires knowledge of political pressure points, and systematic efforts to shape narratives of principal actors, to redirect financial resources and to promote institutional and societal learning and adaptation. • We address the potential of multilateral organizations and agreements, national governments, the financial industry, agribusiness, producers and consumer groups to respond to the need for change. The roles of different actors are interlocking: there is no single point of entry for a theory of change. • The roles of principal actors are drawn along a continuum of change, suggesting specific roles and types of actions to be addressed in evaluation and intervention. Given societal concern, agents for change may persevere within government, agribusiness or civil society organizations; their ability to bring change is dynamic and opportunistic, and driven by strategic alliances. As levers of agrifood system transformation, it is crucial to engage influential governmental actors as change agents. • Actors’ respective ability to adopt the results of TEEBAgriFood studies as a tool to direct change will depend on how well those results are communicated and adopted as narratives by influential actors and as entry points for education and consumer consciousness

    Differential Spatial Expression and Subcellular Localization of CtBP Family Members in Rodent Brain

    Get PDF
    C-terminal binding proteins (CtBPs) are well-characterized nuclear transcriptional co-regulators. In addition, cytoplasmic functions were discovered for these ubiquitously expressed proteins. These include the involvement of the isoform CtBP1-S/BARS50 in cellular membrane-trafficking processes and a role of the isoform RIBEYE as molecular scaffolds in ribbons, the presynaptic specializations of sensory synapses. CtBPs were suggested to regulate neuronal differentiation and they were implied in the control of gene expression during epileptogenesis. However, the expression patterns of CtBP family members in specific brain areas and their subcellular localizations in neurons in situ are largely unknown. Here, we performed comprehensive assessment of the expression of CtBP1 and CtBP2 in mouse brain at the microscopic and the ultra-structural levels using specific antibodies. We quantified and compared expression levels of both CtBPs in biochemically isolated brain fractions containing cellular nuclei or synaptic compartment. Our study demonstrates differential regional and subcellular expression patterns for the two CtBP family members in brain and reveals a previously unknown synaptic localization for CtBP2 in particular brain regions. Finally, we propose a mechanism of differential synapto-nuclear targeting of its splice variants CtBP2-S and CtBP2-L in neurons

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on ten research projects and a list of publications.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Grant 5 R01 DC00270National Institutes of Health Grant 5 P01 DC00361National Institutes of Health Grant 2 R01 DC00100National Institutes of Health Grant 7 R29 DC00428National Institutes of Health Grant 2 R01 DC00126U.S. Air Force - Office of Scientific Research Grant AFOSR 90-0200U.S. Navy - Office of Naval Research Grant N00014-90-J-1935National Institutes of Health Grant 5 R29 DC00625U.S. Navy - Office of Naval Research Grant N00014-91-J-145

    Sensory Communication

    Get PDF
    Contains table of contents on Section 2, an introduction, reports on eleven research projects and a list of publications.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Grant 5 R01 DC00270National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Grant 5 R01 DC00100National Institutes of Health Contract 7 R29 DC00428National Institutes of Health Grant 2 R01 DC00126U.S. Air Force - Office of Scientific Research Grant AFOSR 90-0200U.S. Navy - Office of Naval Research Grant N00014-90-J-1935National Institutes of Health Grant 5 R29 DC00625U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-181

    Development of an in-vivo active reversible butyrylcholinesterase inhibitor

    Get PDF
    Alzheimer’s disease (AD) is characterized by severe basal forebrain cholinergic deficit, which results in progressive and chronic deterioration of memory and cognitive functions. Similar to acetylcholinesterase, butyrylcholinesterase (BChE) contributes to the termination of cholinergic neurotransmission. Its enzymatic activity increases with the disease progression, thus classifying BChE as a viable therapeutic target in advanced AD. Potent, selective and reversible human BChE inhibitors were developed. The solved crystal structure of human BChE in complex with the most potent inhibitor reveals its binding mode and provides the molecular basis of its low nanomolar potency. Additionally, this compound is noncytotoxic and has neuroprotective properties. Furthermore, this inhibitor moderately crosses the blood-brain barrier and improves memory, cognitive functions and learning abilities of mice in a model of the cholinergic deficit that characterizes AD, without producing acute cholinergic adverse effects. Our study provides an advanced lead compound for developing drugs for alleviating symptoms caused by cholinergic hypofunction in advanced AD

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fourteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant R01 DC00126National Institutes of Health Grant R01 DC00270National Institutes of Health Contract N01 DC52107U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0176U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0002National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-92-J-184

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fifteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health Contract P01-DC00361National Institutes of Health Contract N01-DC22402National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-94-C-0087U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-93-1-1399U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-94-1-1079U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-92-J-1814National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-88-K-0604National Aeronautics and Space Administration Grant NCC 2-771U.S. Air Force - Office of Scientific Research Grant F49620-94-1-0236U.S. Air Force - Office of Scientific Research Agreement with Brandeis Universit

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2 and reports on five research projects.National Institutes of Health Contract 2 R01 DC00117National Institutes of Health Contract 1 R01 DC02032National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Contract N01 DC22402National Institutes of Health Grant R01-DC001001National Institutes of Health Grant R01-DC00270National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Air Warfare Center Training Systems Division Contract N61339-94-C-0087U.S. Navy - Naval Air Warfare Center Training System Division Contract N61339-93-C-0055U.S. Navy - Office of Naval Research Grant N00014-93-1-1198National Aeronautics and Space Administration/Ames Research Center Grant NCC 2-77
    • …
    corecore