156 research outputs found

    REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW STRATEGICALLY LOCATED AMERIFLUX TOWER SITE IN MISSOURI

    Get PDF
    by June 14, 2004, the MOFLUX site was fully instrumented and data streams started to flow. A primary accomplished deliverable for the project period was the data streams of CO{sub 2} and water vapor fluxes and numerous meteorological variables (from which prepared datasets have been submitted to the AmeriFlux data archive for 2004-2006, Additionally, measurements of leaf biochemistry and physiology, biomass inventory, tree allometry, successional trends other variables were obtained

    A new paradigm of quantifying ecosystem stress through chemical signatures

    Get PDF
    Stress-induced emissions of biogenic volatile organic compounds (VOCs) from terrestrial eco- systems may be one of the dominant sources of VOC emissions worldwide. Understanding the ecosystem stress response could reveal how ecosystems will respond and adapt to climate change and, in turn, quan- tify changes in the atmospheric burden of VOC oxidants and secondary organic aerosols. Here, we argue, based on preliminary evidence from several opportunistic measurement sources, that chemical signatures of stress can be identified and quantified at the ecosystem scale. We also outline future endeavors that we see as next steps toward uncovering quantitative signatures of stress, including new advances in both VOC data collection and analysis of "big data.

    Simultaneous Determination of the Predominant Hyperforins and Hypericins in St. John's Wort (Hypericum perforatum L.) by Liquid Chromatography

    Get PDF
    Hypericin and hyperforin are believed to be among the active constituents in common St. John's wort (Hypericum perforatum L.). Presently, dietary supplements are generally standardized to contain specified levels of hypericin and hyperforin, and the related compounds, pseudohypericin and adhyperforin. A rapid method was developed for simultaneous determination of these 4 active constituents by liquid chromatography (LC). A 1 g portion of dried, finely ground leaf/flower sample is extracted with 20 mL methanol for 2 h. A 0.6 mL aliquot of the crude extract is combined with 5.4 mL acetonitrile-methanol (9 + 1) and passed through a mixed solid-phase cleanup column. The eluate is examined by LC for hyperforin, adhyperforin, hypericin, and pseudohypericin on a Hypersil reversed-phase column by using simultaneous ultraviolet (284 nm) and fluorescence detection (excitation, 470 nm; emission, 590 nm). The compounds are easily separated isocratically within 8 min with a mobile phase of acetonitrile-aqueous 0.1M triethylammonium acetate (8 + 2). Average recoveries of hyperforin and adhyperforin were 101.9 and 98.4%, respectively, for 3 sample mixtures containing concentrations ranging from approximately 0.2 to 1.5% combined hyperforins per gram dry weight. Average relative standard deviation (RSD) values for hyperforin and adhyperforin for all 3 mixtures were 18.9 and 18.0%, respectively. Average recoveries of hypericin and pseudohypericin were 88.6 and 93.3% respectively, from 3 sample mixtures containing concentrations ranging from approximately 0.2 to 0.4% combined hypericins per gram dry weight. Average RSD values for hypericin and pseudohypericin for all 3 mixtures were 3.8 and 4.2%, respectively. C ommon St. John's wort (Hypericum perforatum L.) is a perennial species of the Hypericaceae family, native to Europe. Dietary supplements and other herbal preparations produced from the leaves and flowers of St. John's wort have gained popularity in the United States in recent years (1, 2). A recent overview of 23 controlled clinical trials concluded that St. John's wort was more effective than a placebo for the treatment of mild depression (3). Commercial extracts from the leaves and flowers are also being investigated for anticancer and antiviral activities (4). The predominant napthodianthrone derivatives, hypericin and pseudohypericin, and the phloroglucine derivatives, hyperforin and adhyperforin, are among the compounds presently being investigated for their biological activities. Standardized dietary supplements of St. John's wort currently contain from 0.3 to 0.5% hypericin(s), and/or approximately 3.0% hyperforin(s). In 1998, St. John's wort herbal products showed exceptional sales growth, increasing nearly 3000% from 1997 to 1998 (2). Several recent papers on the chemical analysis of St. John's wort have provided the means to measure many of the predominant chemical constituents from diluted, crude extracts (5-12). In general, samples were extracted and filtered, or liquid-liquid extraction was used to remove chlorophylls and other pigments. The use of mixed solid-phase (MSP) cleanup columns has been reported recently in the literature. Wilson and Romer (13) developed a proprietary cleanup column consisting of a mixture of reversed-phase, ion-exclusion, and ion-exchange packing materials used for cleanup of extracts of corn, cottonseed, rice, mixed feeds, and a variety of nuts in the determination of aflatoxins. Similarly, Tacke and Casper (14) developed a C 18 -alumina (1 + 3) MSP cleanup column for wheat extracts in the determination of deoxynivalenol. The following method was developed to provide a rapid, inexpensive, MSP cleanup with simultaneous determination of the 4 compounds of greatest current interest, hypericin, hyperforin, pseudohypericin, and adhyperforin from flower and leaf mixtures of St. John's wort

    Plant Adaptation to Drought --- Interdisciplinary Research at the University of Missouri [abstract]

    Get PDF
    Only abstract of poster available.Track V: BiomassDrought is the most important cause of crop failure in Missouri and limits plant productivity in large parts of the US and the world. Drought induces severe reductions in average annual crop yields on a regional scale and can have devastating effects at the farm level. Regional droughts can also strikingly reduce net primary productivity of natural ecosystems. Research on plant adaptation to drought is a long-standing, important component of MU faculty members, who comprise a strong, collaborative team of university and USDA-ARS scientists and are among the international leaders in drought research. Group members represent expertise from a broad range of disciplines, including plant physiology, agronomy, forestry, plant breeding, molecular biology, biotechnology, entomology, plant pathology, and soil science. Areas of research span from basic to applied aspects of plant adaptation to drought, fostering the translation of basic discoveries of underlying mechanisms to the delivery of more drought-tolerant crops at the doorsteps of American farmers. In addition to local collaborations, the team interacts with other scientists in the state of Missouri (e.g. Danforth Plant Sciences Center and Washington University in St. Louis) and at the national and international levels (including Australia, England, India, Mexico [CIMMYT], and The Philippines [International Rice Research Institute]). Active research projects conducted by the drought community at MU include research funded by state, federal, commodity group (e.g. Missouri Soybean Merchandising Council, United Soybean Board, Cotton Inc.) and private (Monsanto, Syngenta) sources. Of particular note, members of the group were recently awarded over $1.5 million from the Missouri Life Sciences Research Board to establish “rainout shelters” that will allow control of precipitation under field conditions. The ability to manage the timing, duration, and intensity of water deficit stress under field conditions is essential to examine plant responses to drought and interactions of drought and biotic stresses in mid-western environments. The track record of excellence in drought research and the broad range of expertise of the interdisciplinary group provide fertile grounds for creative and productive research endeavors that are directed to optimize crop and woody plant biomass production

    Human papillomavirus infection in women with and without cervical cancer in Karachi, Pakistan

    Get PDF
    BACKGROUND: No data exist on the population prevalence of, or risk factors for, human papillomavirus (HPV) infection in predominantly Muslim countries in Asia. METHODS: Cervical specimens were obtained from 899 married women aged 15-59 years from the general population of Karachi, Pakistan and from 91 locally diagnosed invasive cervical cancers (ICCs). HPV was detected using a GP5+/6+ PCR-based assay. RESULTS: The prevalence of HPV in the general population was 2.8%, with no evidence of higher HPV prevalence in young women. The positivity of HPV was associated with women's lifetime number of sexual partners, but particularly with the age difference between spouses and other husbands' characteristics, such as extramarital sexual relationships and regular absence from home. The HPV16/18 accounted for 24 and 88% of HPV-positive women in the general population and ICC, respectively. CONCLUSION: Cervical cancer prevention policies should take into account the low HPV prevalence and low acceptability of gynaecological examination in this population

    Low-flow analysis of the rivers in the Ljubljanica watershed

    Get PDF
    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates reflecting uncertainties in the approaches used to model, and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on the production, and thus the methanol emission magnitude, and stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem-level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; they are however neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow taking full advantage of the rich information content of micrometeorological flux measurements
    corecore