275 research outputs found

    Evidence for a Genetic Basis of Aging in Two Wild Vertebrate Populations

    Get PDF
    SummaryAging, or senescence, defined as a decline in physiological function with age, has long been a focus of research interest for evolutionary biologists. How has natural selection failed to remove genetic effects responsible for such reduced fitness among older individuals? Current evolutionary theory explains this phenomenon by showing that, as a result of the risk of death from environmental causes that individuals experience, the force of selection inevitably weakens with age [1–3]. This in turn means that genetic mutations having detrimental effects that are only felt late in life might persist in a population. Although widely accepted, this theory rests on the assumption that there is genetic variation for aging in natural systems [4, 5], or (equivalently), that genotype-by-age interactions (GxA) occur for fitness. To date, empirical support for this assumption has come almost entirely from laboratory studies on invertebrate systems, most notably Drosophila and C. elegans [6–10], whereas tests of genetic variation for aging are largely lacking from natural populations [5]. By using data from two wild mammal populations, we perform quantitative genetic analyses of fitness and provide the first evidence for a genetic basis of senescence to come from a study in the natural environment. We find evidence that genetic differences among individuals cause variation in their rates of aging and that additive genetic variance for fitness increases with age, as predicted by the evolutionary theory of senescence

    Vitamin D status is heritable and under environment‐dependent selection in the wild

    Get PDF
    Vitamin D has a well‐established role in skeletal health and is increasingly linked to chronic disease and mortality in humans and companion animals. Despite the clear significance of vitamin D for health and obvious implications for fitness under natural conditions, no longitudinal study has tested whether the circulating concentration of vitamin D is under natural selection in the wild. Here, we show that concentrations of dietary‐derived vitamin D(2) and endogenously produced vitamin D(3) metabolites are heritable and largely polygenic in a wild population of Soay sheep (Ovis aries). Vitamin D(2) status was positively associated with female adult survival, and vitamin D(3) status predicted female fecundity in particular, good environment years when sheep density and competition for resources was low. Our study provides evidence that vitamin D status has the potential to respond to selection, and also provides new insights into how vitamin D metabolism is associated with fitness in the wild

    Functionally distinct T-helper cell phenotypes predict resistance to different types of parasites in a wild mammal

    Get PDF
    The adaptive immune system is critical to an effective response to infection in vertebrates, with T-helper (Th) cells pivotal in orchestrating these responses. In natural populations where co-infections are the norm, different Th responses are likely to play an important role in maintaining host health and fitness, a relationship which remains poorly understood in wild animals. In this study, we characterised variation in functionally distinct Th responses in a wild population of Soay sheep by enumerating cells expressing Th-subset specific transcription factors and quantifying Th-associated cytokines. We tested the prediction that raised Th1 and Th2 responses should predict reduced apicomplexan and helminth parasite burdens, respectively. All measures of Th-associated cytokine production increased with age, while Th17- and regulatory Th-associated cytokine production increased more rapidly with age in males than females. Independent of age, sex, and each other, IL-4 and Gata3 negatively predicted gastro-intestinal nematode faecal egg count, while IFN-γ negatively predicted coccidian faecal oocyst count. Our results provide important support from outside the laboratory that Th1 and Th2 responses predict resistance to different kinds of parasites, and illustrate how harnessing specific reagents and tools from laboratory immunology will illuminate our understanding of host-parasite interactions in the wild

    Contrasting drivers of reproductive ageing in albatrosses

    Get PDF
    1. Age-related variation in reproductive performance is ubiquitous in wild vertebrate populations and has important consequences for population and evolutionary dynamics.2. The ageing trajectory is shaped by both within-individual processes, such as improvement and senescence, and the among-individual effects of selective appearance and disappearance. To date, few studies have compared the role of these different drivers among species or populations.3. In this study, we use nearly 40 years of longitudinal monitoring data to contrast the within-and among-individual processes contributing to the reproductive ageing patterns in three albatross species (two biennial and one annual breeder) and test whether these can be explained by differences in life histories.4. Early-life performance in all species increased with age and was predominantly influenced by within-individual improvements. However, reproductive senescence was detected in only two of the species. In the species exhibiting senescent declines, we also detected a terminal improvement in breeding success. This is suggestive of a trade-off between reproduction and survival, which was supported by evidence of selective disappearance of good breeders.5. We demonstrate that comparisons of closely related species which differ in specific aspects of their life history can shed light on the ecological and evolutionary forces shaping variation in ageing patterns

    Age-related variation in immunity in a wild mammal population

    Get PDF
    Age-related changes in immunity are well documented in humans and laboratory mammals. Using blood samples collected from wild Soay sheep, we show that pronounced differences in T-cell subsets and inflammatory markers amongst age classes are also evident under natural conditions. These shifts parallel those observed in mammals experiencing protected environments. We found progressive declines in the proportion of naïve CD4 T cells with age, a precipitous drop in γδ T cells after the second year of life and an increase in acute phase protein levels amongst geriatric sheep. Our findings suggest immune aging patterns observed in laboratory and domestic mammals may generalize to more complex, challenging environments and could have fitness costs under natural conditions

    Using the MitoB method to assess levels of reactive oxygen species in ecological studies of oxidative stress

    Get PDF
    In recent years evolutionary ecologists have become increasingly interested in the effects of reactive oxygen species (ROS) on the life-histories of animals. ROS levels have mostly been inferred indirectly due to the limitations of estimating ROS from in vitro methods. However, measuring ROS (hydrogen peroxide, H2O2) content in vivo is now possible using the MitoB probe. Here, we extend and refine the MitoB method to make it suitable for ecological studies of oxidative stress using the brown trout Salmo trutta as model. The MitoB method allows an evaluation of H2O2 levels in living organisms over a timescale from hours to days. The method is flexible with regard to the duration of exposure and initial concentration of the MitoB probe, and there is no transfer of the MitoB probe between fish. H2O2 levels were consistent across subsamples of the same liver but differed between muscle subsamples and between tissues of the same animal. The MitoB method provides a convenient method for measuring ROS levels in living animals over a significant period of time. Given its wide range of possible applications, it opens the opportunity to study the role of ROS in mediating life history trade-offs in ecological settings

    Integrating personality research and animal contest theory: aggressiveness in the green swordtail <i>Xiphophorus helleri</i>

    Get PDF
    &lt;p&gt;Aggression occurs when individuals compete over limiting resources. While theoretical studies have long placed a strong emphasis on context-specificity of aggression, there is increasing recognition that consistent behavioural differences exist among individuals, and that aggressiveness may be an important component of individual personality. Though empirical studies tend to focus on one aspect or the other, we suggest there is merit in modelling both within-and among-individual variation in agonistic behaviour simultaneously. Here, we demonstrate how this can be achieved using multivariate linear mixed effect models. Using data from repeated mirror trials and dyadic interactions of male green swordtails, &lt;i&gt;Xiphophorus helleri&lt;/i&gt;, we show repeatable components of (co)variation in a suite of agonistic behaviour that is broadly consistent with a major axis of variation in aggressiveness. We also show that observed focal behaviour is dependent on opponent effects, which can themselves be repeatable but were more generally found to be context specific. In particular, our models show that within-individual variation in agonistic behaviour is explained, at least in part, by the relative size of a live opponent as predicted by contest theory. Finally, we suggest several additional applications of the multivariate models demonstrated here. These include testing the recently queried functional equivalence of alternative experimental approaches, (e. g., mirror trials, dyadic interaction tests) for assaying individual aggressiveness.&lt;/p&gt
    corecore