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Summary

Aging, or senescence, defined as a decline in physio-

logical function with age, has long been a focus of

research interest for evolutionary biologists. How
has natural selection failed to remove genetic effects

responsible for such reduced fitness among older
individuals? Current evolutionary theory explains

this phenomenon by showing that, as a result of the
risk of death from environmental causes that individ-

uals experience, the force of selection inevitably
weakens with age [1–3]. This in turn means that

genetic mutations having detrimental effects that are
only felt late in life might persist in a population.

Although widely accepted, this theory rests on the
assumption that there is genetic variation for aging

in natural systems [4, 5], or (equivalently), that geno-
type-by-age interactions (GxA) occur for fitness. To

date, empirical support for this assumption has
come almost entirely from laboratory studies on in-

vertebrate systems, most notably Drosophila and
C. elegans [6–10], whereas tests of genetic variation

for aging are largely lacking from natural populations
[5]. By using data from two wild mammal populations,

we perform quantitative genetic analyses of fitness
and provide the first evidence for a genetic basis of

senescence to come from a study in the natural envi-
ronment. We find evidence that genetic differences

among individuals cause variation in their rates of
aging and that additive genetic variance for fitness

increases with age, as predicted by the evolutionary
theory of senescence.

*Correspondence: alastair.wilson@ed.ac.uk
Results and Discussion

We examined the additive genetic basis of variation in
aging rates by using data from two long-term studies
of wild ungulates, Soay sheep (Ovis aries), and red
deer (Cervus elaphus) from the Scottish islands of Hirta
(St. Kilda) and Rum, respectively [11, 12]. The systems
are ideal for this purpose because they provide unparal-
leled levels of data (including individual survival and
reproductive success) for large numbers of long-lived
animals. In both study systems, individually marked
animals are followed throughout their lives from birth
until death. Furthermore, pedigree structures elucidated
with a combination of observational and molecular
approaches allow the application of quantitative genetic
models to data.

Although genetic studies of senescence have often
tended to focus on mortality, evolutionary theory relates
specifically to the age-specific probabilities of both sur-
vival and reproduction [13, 14]. Here, we have used an
annual measure of individual fitness (pti) that describes
an individual’s contribution to annual changes in popu-
lation size [15–17] (pti; see Experimental Procedures).
This measure consequently incorporates contributions
from both survival and annual breeding success. In
females of both species, average annual fitness shows
a strong signature of senescence (Figure 1). Thus, the
age-specific mean initially increases from birth (to
a maximum at age 4 years in sheep and age 8 years in
deer) before declining in old age. Although age effects
on survival are well known [18, 19], the consideration
of contributions from survival and fecundity separately
(data not shown) reveals that reproductive senescence
also occurs in these populations.

We used quantitative genetic animal models [20] to
test whether variation in aging rates in annual fitness in
female red deer and Soay sheep had an additive genetic
basis and to explore how additive genetic (co)variance
in fitness changed with age in these populations. Animal
models use available pedigree structures to partition
phenotypic variance into additive genetic and environ-
mental effects. We began by splitting annual fitness
data from each population into discrete age classes
(lambs, yearlings, 2–4 year olds, and R 5 year olds for
the Soay sheep; yearlings, 2 year olds, 3–8 year olds,
and R 9 year olds for the deer, see Experimental Proce-
dures) and testing whether additive genetic variation for
fitness differed between age classes. We then applied
random regression animal models [21, 22] to the full
deer and sheep data sets. These models allowed us to
specifically test for additive genetic variation in individ-
ual aging rates and to generate predicted age-specific
additive genetic (co)variance matrices (G matrices)
across all ages without the dramatic loss of power asso-
ciated with subdividing the data into age classes (see
Experimental Procedures; [22]).

There was evidence of age-specific genetic effects on
fitness in both red deer and Soay sheep populations.

https://core.ac.uk/display/81175922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:alastair.wilson@ed.ac.uk


Genetic Basis of Aging in the Wild
2137
Figure 1. Age-Specific Average Fitness in Soay Sheep and Red Deer

Plots of mean annual fitness pti by age (in years) in female (A) sheep and (B) deer. Error bars indicate 6 the standard error (SE). Note that pti

incorporates fitness contributions from both survival and reproductive success, but the latter is defined slightly differently in the two systems

(see Experimental Procedures).
Analyses of additive genetic variance for fitness in differ-
ent age classes suggested that additive genetic vari-
ance (s2

A) for fitness varied over ontogeny. In particular,
estimated additive variance was greater in the oldest
data subsets than in prime-age animals for both sheep
and deer (Table 1). We used bivariate formulations of
Model 1 (see Experimental Procedures) to test the sig-
nificance of these differences. In red deer, s2

A was three
times greater in the older (9+) females than in prime-age
animals, a difference that was statistically significant
(c2

1 = 5.36, p = 0.02). In Soay sheep, significant additive
genetic variance for fitness was only found for the 5+
females. In contrast, for prime-age sheep, s2

A was esti-
mated as 20.013 (60.065) and fixed at zero with the
model constrained to positive parameter space (Table 1).
Although we interpret these results as indicating an
absence of genetic variance in prime age, it should be
noted that under an (unconstrained) bivariate model,
there was no significant difference between s2

A in
prime-age and older sheep (c2

1 = 2.6, p = 0.11).
Random regression animal models [21–23] also sup-

ported the presence of additive genetic variance in ag-
ing rates (or significant GxA). In both populations, under
Model 2 (in which residual variance was assumed to be
constant with age) the presence of GxA was statistically
supported (likelihood-ratio tests: Soay sheep c2

2 = 7.18,
p = 0.028; red deer c2

2 = 126, p < 0.001). We were also
able to parameterize random regression animal models
by using heterogeneous error structures (Model 3, see
Experimental Procedures for details), providing signifi-
cantly better fits in the Soay sheep (c2

10 = 44.6, p <
0.001) and red deer (c2

14 = 389, p < 0.001). Under this
more complex model, the GxA interaction was still
highly significant in red deer (likelihood-ratio compari-
son of models with x = 0.1; c2

2 = 12.7, p = 0.002). How-
ever, in Soay sheep, the GxA interaction was no longer
statistically significant (likelihood-ratio comparison of
first order and constant models: c2

2 = 1.20, p = 0.549).
This suggests that Model 2 might be subject to bias
(e.g., by increasing residual variance with age). How-
ever, age-specific estimates of the additive variance
(discussed below) were similar under models 2 and 3
(Figures 2A and 2C), and it is also likely that power limi-
tations under the more complex model contribute to
a lack of significance. In order to determine how GxA in-
fluences the expression of genetic variance at different
ages, the full G matrices of for annual fitness were re-
constructed from Model 3 in both populations. However,
before discussing their structure, we reiterate that GxA
was significant only in red deer such that and age-
related patterns in Soay sheep must be considered
suggestive only.

In both red deer and Soay sheep systems, estimated
s2

A increased with age, whereas genetic correlations
declined as the time between measurement ages in-
creased (Figures 2 and 3). The observed increase in
s2

A in late life is predicted by the evolutionary theory of
aging, as a consequence of mortality leading to weaken-
ing selection with age [2, 4, 5]. Selection on alleles with
deleterious effects in late life is expected to be weak
because comparatively few individuals survive long
enough for the effects to be expressed. Furthermore,
the rescaling of the full covariance matrices (Tables S1
and S2 available online) showed that although genetic
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Table 1. Components of Variance in Annual Fitness for Age-Specific Subsets of Soay Sheep and Red Deer

Population Age Class Mean (SE) s2
P s2

Y s2
PE s2

M s2
R s2

A P

Soay Sheep

Lambs 20.723 (0.030) 1.448 (0.056) 0.052 (0.023) nf 0.092 (0.041) 1.246 (0.069) 0.059 (0.059) 0.217

Yearlings 0.107 (0.041) 1.343 (0.069) 0.021 (0.02) nf 0.000 (-)+ 1.161 (0.119) 0.161 (0.111) 0.161

Prime age (2–4) 0.670 (0.031) 1.493 (0.061) 0.062 (0.026) 0.367 (0.056) 0.000 (-)+ 1.065 (0.052) 0.000 (-)+ 1

Older (5+) 0.498 (0.033) 1.581 (0.059) 0.04 (0.02) 0.054 (0.068) 0.000 (-)+ 1.342 (0.054) 0.145 (0.071) 0.035

Red Deer

Yearlings 20.449 (0.037) 0.953 (0.053) 0.002 (0.011) nf 0.00 (-)+ 0.817 (0.085) 0.135 (0.081) 0.070

Second years 20.190 (0.024) 0.320 (0.025) 0.061 (0.019) nf 0.000 (-)+ 0.259 (0.016) 0.000 (-)+ 1

Prime age (3–8) 0.307 (0.020) 0.939 (0.027) 0.006 (0.005) 0.000 (-)+ 0.002 (0.012) 0.880 (0.028) 0.050 (0.019) 0.015

Older (9+) 0.016 (0.037) 1.760 (0.073) 0.017 (0.014) 0.000 (-)+ 0.000 (-)+ 1.593 (0.071) 0.151 (0.048) <0.001

Annual Fitness was defined as an individual’s contribution to population growth, and shown here are the phenotypic mean and the phenotypic

(s2
P), year (s2

Y), permanent environment (s2
PE), maternal (s2

M), residual (s2
R), and additive (s2

A) genetic variances estimated under Model 1.

Phenotypic variance (s2
P) was determined as the sum of estimated variance components. P values relate to the significance of s2

A on the basis

of likelihood-ratio tests. Standard errors are provided in parentheses, nf indicates an effect not fitted, and + indicates a variance estimate fixed

at the edge of parameter space (with nonestimable standard error).
correlations (rG) between fitness at different ages re-
mained close to +1 across much of the correlation sur-
face, they reached values well below this when fitness
in the youngest and eldest age classes was compared
(Figure 3; minimum rG: 20.16 in Soay sheep, ages 0 ver-
sus 10; 0.09 in red deer, ages 1 versus 15). Although
there is little support for strong negative genetic correla-
tions across ages, the fact that positive correlations
decline might be indicative of some degree of antago-
nism between genetic effects on early and late fitness.

Eigenvector decomposition of the G matrices for age-
specific pti also yielded similar results in the two popula-
tions (Table 2). The first eigenvector dominated in both
cases (89.5% of the variance in sheep and 93.7% in
deer) with loading coefficients of consistent sign that
increased in magnitude across ages. This corresponds
to variation in which an individual’s additive genetic con-
tribution to fitness is consistently either above or below
the population mean at all ages. The increasing loading
coefficients show that deviations from the mean in-
creased with age (mirroring the trend of increasing
s2

A). Although accounting for a comparatively small pro-
portion of the variation (11.5% in sheep, 6.35% in deer),
loading coefficients on the second eigenvector showed
a switch in sign (Table 2), consistent with the occurrence
of allelic variants that have a positive effect on early fit-
ness and a negative effect later in life (or vice versa).

Two mutually nonexclusive genetic mechanisms have
been proposed that could result from a weakening of
selection late in life and be responsible for observed
declines in fitness: antagonistic pleiotropy [3] (AP), and
mutation accumulation [2] (MA). In the former case,
senescence is the result of selection’s favoring alleles
with beneficial early life effects but detrimental conse-
quences in late life. Under the latter mechanism, fitness
declines result from a build up of deleterious mutations
with effects specific to old age [1, 4]. Considerable
efforts have been made to disentangle MA and AP as
alternate genetic mechanisms in laboratory studies of
senescence [8–10] and more recently in quantitative
genetic studies of life history traits in natural populations
[24–26]. However, it is important to note that although
these are locus-based mechanisms, fitness, and quanti-
tative traits closely correlated with it, is expected to be
influenced by many genetic loci. If loci differ in their
mechanism of contribution to senescence, then at-
tempts to disentangle the relative roles of MA and AP
will be methodologically challenging.

In the current instance, estimated G matrices for age-
specific fitness show patterns of GxA that are consistent
with a role for both genetic mechanisms. Thus, in both
the Soay sheep and red deer, the dominant pattern
was one of increasing additive genetic variance in later
life, a pattern expected under MA but not precluded by
the sole action of AP [2, 8]. Although few discriminatory
tests are applicable outside of the laboratory, one expec-
tation of mutation accumulation is that inbreeding
depression will increase with age [8]. This derives from
theoretical models as a consequence of increased sensi-
tivity of fitness to homozygous recessive mutations in
late life under MA but not AP [8]. We found some limited
support for this relationship in the red deer population.
Specifically, mixed-model analyses of pti (see Experi-
mental Procedures) showed a negative, but nonsig-
nificant, effect of increased inbreeding coefficient (F).
However, the significant negative interaction between
standardized age and F does indicate significant in-
breeding depression at late ages (Table 3). It should be
noted that power is limited here because only 4.5% of
female red deer have F > 0. In the Soay sheep, the shorter
life span coupled with a very low proportion of individ-
uals having F > 0 (just 1%) meant this analysis of inbreed-
ing effects had even less power. Nevertheless, negative
coefficients associated with F and its interaction with
age gave the same qualitative picture, albeit without
statistical support (Table 3). Conversely, allelic variants
with antagonistic effects on early and late fitness consis-
tent with AP might also be segregating, as suggested by
the declining genetic correlations and eigenvector anal-
yses of the G matrices. Although this interpretation must
be made cautiously, recent analyses of reproductive
traits in the red deer provide additional support for
antagonistic pleiotropy. For example, there is some evi-
dence for a genetic basis to the observed trade off
between early life fecundity and the rate of aging for off-
spring birth weight (an indicator of maternal perfor-
mance [27, 28]). Genetic correlations consistent with
AP have also been shown between shown early and
late reproductive traits in mute swans (Cygnus olor)
[26]. To the extent that patterns from these few study
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Figure 2. Additive Genetic Variance as a Function of Age in Soay Sheep and Red Deer

Additive genetic variance as a function of standardized age for annual fitness in sheep (A and C) and deer (B and D). The additive genetic func-

tions were estimated under Models 2 (A and B) and 3 (C and D) (see text for details). Approximate 95% confidence intervals are shown by dotted

lines. Note that the absolute (i.e., unstandardized) scaling of the age axis differs between plots (Soay sheep, 0–10 years; red deer, 1–15 years).
systems can be generalized, co-occurrence of MA and
AP might therefore be the norm in natural populations,
further confounding any attempt to separate them.

We have demonstrated here that aging processes
measured at the phenotypic level also have an underly-
ing additive genetic basis in wild animal populations.
The presence of genotype-by-age interaction for fitness
was statistically supported in the red deer, whereas
analyses of Soay sheep were strongly suggestive of sim-
ilar processes occurring. Recently, random regression
animal models were also used for the exploration of
the genetics of aging in a wild passerine bird [23]. In
that case, the GxA term was not statistically significant,
although when it was fitted, genetic variance for female
fitness again increased with age [23]. There is a very real
risk that power limitations inherent to data sets from
natural populations will prevent detection of GxA, par-
ticularly for traits such as fitness that are expected to
have low genetic variance. Appropriate tools for power
analysis are now being developed [29] and should prove
informative in this regard.
The genetic basis of senescence is a fundamental
assumption of the evolutionary theory of aging that
has, until now, remained largely untested outside of
the laboratory [4]. The present study provides, to our
knowledge, the first evidence for additive genetic vari-
ance in aging rates from a wild, nonmodel study organ-
ism. Furthermore, the age-specific patterns of additive
genetic (co)variation evident in the two populations
examined here were entirely consistent with the hypoth-
esis that declines in fitness with age are driven by
a weakening of natural selection. It should be noted
that the assertion that natural selection must always
weaken with age has been challenged by recent models
[30]. If strong selection on the fitness of older animals
were to arise in either the red deer or Soay sheep sys-
tems, then the increased additive genetic variance at
late ages might facilitate further evolution of aging
patterns (e.g, toward increased longevity [31]). It is
therefore clear that a greater understanding of the evo-
lutionary ecology of aging, and the implications of geno-
type by age interactions, should come from accurate
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Figure 3. Genetic Correlations among Ages for Annual Fitness in Soay Sheep and Red Deer

Additive genetic correlation (rG) structure across standardized age for annual fitness in (A) sheep and (B) deer estimated under Model 3. Stan-

dardized age is shown on x and y axes, with the value of rG between any pair of ages denoted by the shading. Plots are symmetrical about the

diagonal lines, where age on the x axis equals age on the y axis and rG is thus defined as +1.
characterization of the G matrix for fitness (or fitness-re-
lated traits [32]) expressed across ontogeny. Our results
give clear testimony to the importance and utility of
long-term individual-based studies of wild populations
for the testing of evolutionary theory in nature. It is our
hope that similar analyses in wild populations will further
elucidate the generality of the patterns observed here.

Experimental Procedures

Measure of Annual Fitness

We defined the annual fitness of individual i in year t as its contribu-

tion to population growth in that year (pti) [15]. This measure is

appropriate for use in stochastic environments [15, 16], has distribu-

tional properties making it suitable for linear mixed-model analyses

of the type performed here [17], and is defined as:

pti =
sti 2 st

Nt 2 1
+

fti 2 ft

Nt 2 1
; (1)

where Nt is the population size in year t, sti is the survival of individual

i from year t to year t+1, fti is half of the number of offspring produced

by i in year t that survive to year t+1, and st and ft are the mean sur-

vival and fecundity for the population in year t, respectively. For

computational purposes we rescaled fitness (multiplying by a factor

of 1000) for all analyses, but for simplicity, we will nevertheless refer

to this rescaled measure as pti. Population census data is collected

at different times in the two studies, and consequently pti is defined

for an annual period starting in August for sheep but in June for deer.

This causes a slightly different partitioning of fitness, with first winter

survival being allocated to the maternal fti in deer but to the offspring

sti in Soay sheep. Analyses of Soay sheep data therefore include

a 0 age class that is not present for red deer. Note that pti is also

closely correlated with more traditional estimators of annual fitness,

and qualitatively similar results (data not shown) were also obtained

with annual fitness determined as survival (0 or 1) plus half of the

number of recruits [23].

Soay Sheep

Since 1985, data relating to birth, death, and reproduction have been

collected for individually marked Soay sheep (Ovis aries) resident in

the Village Bay area of the island of Hirta (57�49’ N, 08�34’W) in the

St. Kilda archipelago of northwest Scotland. These data were used
for the determination of pti for each female in each year of life. In

total, 5663 estimates of pti were made on 1786 females. Sample

sizes decline with age, from 1556 records at age 0 (i.e., fitness for

the year commencing in August of the year of birth) to a single record

at age 16. The pedigree structure of the population has been deter-

mined from field observations of maternity and microsatellite-based

paternity analysis with CERVUS [33]. Putative paternal identities

were accepted if assigned at R 80% pedigree-wide confidence

(subject to a maximum of one allelic incompatibility between sire

and offspring). The full pedigree structure contained 6117 individ-

uals, with 3355 maternal links and 1615 paternal links (from 784 dis-

tinct dams and 495 distinct sires, respectively), with a maximum

depth of nine generations. Complete details of both field and labora-

tory procedures are presented elsewhere [12].

Table 2. Eigenvector Decompositions of the Genetic Variance-

Covariance Matrices for Age-Specific Annual Fitness

Soay Sheep (% Variation) Red Deer (% Variation)

Age PC1 (89.5) PC2 (10.5) PC1 (93.7) PC2 (6.3)

0 20.012 20.421

1 0.027 20.361 20.031 20.491

2 0.066 20.300 20.059 20.438

3 0.105 20.239 20.087 20.385

4 0.144 20.179 20.115 20.333

5 0.183 20.118 20.143 20.280

6 0.223 20.058 20.171 20.227

7 0.262 0.003 20.200 20.174

8 0.301 0.064 20.228 20.122

9 0.340 0.124 20.256 20.069

10 0.379 0.185 20.284 20.016

11 20.312 0.036

12 20.340 0.089

13 20.369 0.142

14 20.397 0.195

15 20.425 0.247

Loading coefficients on age-specific measures of annual fitness

in Soay sheep and red deer are shown. In both cases, the G matrices

were estimated under Model 3. Note that all variation is explained

by two principle components because G is determined from the

covariance matrix of random regression coefficients (having dimen-

sion 2).
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Table 3. Mixed-Model Analyses to Test the Effect of Age on Inbreeding Depression

Population Fixed effect Coefficient (SE) Numerator DF Denominator DF Conditional Wald F P

Soay Sheep

Age 16 4657.0 69.06 <0.001

F 28.217 (6.283) 1 1806.0 0.97 0.329

F. stAGE 27.429 (6.940) 1 5008.0 1.15 0.283

Red Deer

Age 22 4780.8 33.23 <0.001

F 29.002 (4.414) 1 730.2 0.33 0.569

F. stAGE 211.010 (5.572) 1 4091.9 3.90 0.049

Models were fitted with fixed effects of age (as a factor), inbreeding coefficient (F), and the interaction between F and age (as a continuous vari-

able). Individual identity was included as a random effect so that repeated measures on individuals could be accounted for, and the statistical

significance of fixed effects was assessed with conditional Wald tests. DF indicates degrees of freedom.
Red Deer

Annual fitness was similarly determined for female red deer (Cervus

elaphus) from the North Block of the Isle of Rum, Scotland (57�03’ N,

06�21’W); this population has been studied intensively since 1971.

The data comprised 5041 estimates of pti on 750 females, with sam-

ple sizes declining from 675 records at age 1 (fitness for the year

commencing in May of the year after birth) to a single record at

age 23. Maternities were determined by observation, whereas pater-

nity assignment was based on a combination of molecular pedigree

analysis and rut observations [34]. The full pedigree structure had

3740 individuals, with 3168 maternal links and 1262 paternal links

(from 681 distinct dams and 243 distinct sires, respectively), with

a maximum depth of ten generations. Full details of field and labora-

tory protocols used in this study are again presented elsewhere

[17, 34].

Quantitative Genetic Analyses

We used animal models [20] to partition variance in pti into additive

genetic and environmental components with the software ASReml

2.00a. Age-related patterns in additive genetic (co)variance were

tested for in two ways. First, we estimated additive genetic variance

in four age-specific data subsets of each population from Model 1,

pti = m + AGE + ai + pei + mk + year + ei, (2)

In sheep, data subsets were lambs (age 0), yearlings (age 1), prime

age (2–4), and older (5+). In deer, they were were yearlings, second

years, prime age (3–8), and older (9+). In Model 1, fixed effects

included the population mean (m) and age in years (as a multilevel

factor). The distribution of individual breeding values (ai) is assumed

to have a mean of zero and variance of s2
A (the additive genetic

variance). The estimation of s2
A is possible because the variance-

covariance matrix of additive genetic effects is assumed equal to

As2
a (where A is the additive numerator relationship matrix obtained

from the pedigree). Additional random effects were fitted for the

avoidance of upward bias in s2
A from repeated measures and com-

mon environments [35] and included a permanent environment

effect, pei (for prime age and older subsets); maternal identity, mk;

and year of measurement, year. Year was included so that the annual

differences in important environmental conditions (e.g., density,

weather, food availability) could be accounted for. All random

effects (and residual errors, ei) were assumed to be normally distrib-

uted (with zero means and variances to be estimated). For each data

subset, statistical significance of s2
A was determined by likelihood-

ratio test comparison to a reduced model. Significant differences in

s2
A between prime-age and older animals were also tested for with

bivariate formulations of Model 1 (but with no maternal effects fit-

ted), in which pti in each age grouping was treated as a different trait.

Likelihood-ratio tests were used for the statistical comparison of

a model in which s2
A was free to differ between traits to a constrained

model in which s2
A.prime age = s2

A.older.

The second approach we used was to explicitly test for genotype-

by-age (GxA) interactions by using random regression [21, 36, 37].

Individual breeding values were modeled as linear functions of

age, such that ait = ai0 + bi.stAGE, where ai0 is the additive genetic

merit of individual i at stAGE = 0 and bi is the slope of the individual’s
genetic reaction norm. To avoid extrapolating beyond the support of

the data, we excluded records from females older than 10 years in

the sheep and older than 15 years in the deer. This retained approx-

imately 98% of available records in both cases. Thus, fitness of

individual i at time t (Model 2) was specified as

pti = m + AGE + ðai0 + bi,stAGEÞ+ pei + mk + year + ei, (3)

Because there was a lack of support for maternal effects in deer or

sheep older than 0 (Model 1 results), we specified the maternal effect

mk to be present only in Soay lambs. Significance of GxA was

assessed by likelihood-ratio tests to a reduced model in which the

additive effect is a zero-order function of age (i.e., constant). Vari-

ance-covariance matrices for ai0 and bi were back transformed to

give G, the additive genetic covariance matrices of age-specific fit-

ness and approximate standard errors estimated (in accordance

with [38]). We used eigenvector decomposition to summarize the

major patterns of variation in G.

Although s2
A can change with age under Model 2, other variance

components are constrained to be constant. Assuming such homo-

geneity might not always be appropriate [39], we therefore also

tested models, with pei also treated as a first-order function of

age. This did not significantly improve the model for either popula-

tion (data not shown). Second, we relaxed the assumption of

homogenous residual variance by fitting error structures as diagonal

matrices with dimension equal to the number of age classes

(Model 3). Although requiring a large increase in the number of

parameters to be estimated (an additional 11 in sheep and 15 in

deer), this structure allows residual variance to vary with age.

Age-Specific Effects of Inbreeding Depression

We tested for increased inbreeding depression with age [8] by using

mixed models of pti. The inbreeding coefficient (F) of each individual

was obtained with the program Pedigree Viewer (http://www-

personal.une.edu.au/wbkinghor/pedigree.htm), and both F and its

interaction with stAGE were fitted as fixed effects. A main effect of

age (as a factor) was also included, and identity and year of mea-

surement were included as random effects. Parameter estimates

were obtained with the program ASReml 2.00a, and the significance

of fixed effects determined from conditional Wald F statistics.

Supplemental Data

Two tables are available at http://www.current-biology.com/cgi/

content/full/17/24/2136/DC1/.
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