158 research outputs found

    Topography driven spreading

    Get PDF
    Roughening a hydrophobic surface enhances its nonwetting properties into superhydrophobicity. For liquids other than water, roughness can induce a complete rollup of a droplet. However, topographic effects can also enhance partial wetting by a given liquid into complete wetting to create superwetting. In this work, a model system of spreading droplets of a nonvolatile liquid on surfaces having lithographically produced pillars is used to show that superwetting also modifies the dynamics of spreading. The edge speed-dynamic contact angle relation is shown to obey a simple power law, and such power laws are shown to apply to naturally occurring surfaces

    The evolution of the Aristolochia pallida complex (Aristolochiaceae) challenges traditional taxonomy and reflects large-scale glacial refugia in the Mediterranean

    Get PDF
    The taxonomy of the Mediterranean Aristolochia pallida complex has been under debate since several decades with the following species currently recognized: A. pallida, A. lutea, A. nardiana, A. microstoma, A. merxmuelleri, A. croatica, and A. castellana. These taxa are distributed from Iberia to Turkey. To reconstruct phylogenetic and biogeographic patterns, we employed cpDNA sequence variation using both noncoding (intron and spacer) and protein-coding regions (i.e., trnK intron, matK gene, and trnK-psbA spacer). Our results show that the morphology-based traditional taxonomy was not corroborated by our phylogenetic analyses. Aristolochia pallida, A. lutea, A. nardiana, and A. microstoma were not monophyletic. Instead, strong geographic signals were detected. Two major clades, one exclusively occurring in Greece and a second one of pan-Mediterranean distribution, were found. Several subclades distributed in Greece, NW Turkey, Italy, as well as amphi-Adriatic subclades, and a subgroup of southern France and Spain, were revealed. The distribution areas of these groups are in close vicinity to hypothesized glacial refugia areas in the Mediterranean. According to molecular clock analyses the diversification of this complex started around 3–3.3 my, before the onset of glaciation cycles, and the further evolution of and within major lineages falls into the Pleistocene. Based on these data, we conclude that the Aristolochia pallida alliance survived in different Mediterranean refugia rarely with low, but often with a high potential for range extension, and a high degree of morphological diversity.Turkish Science Foundatio

    Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Get PDF
    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions

    Passive water control at the surface of a superhydrophobic lichen

    Get PDF
    Some lichens have a super-hydrophobic upper surface, which repels water drops, keeping the surface dry but probably preventing water uptake. Spore ejection requires water and is most efficient just after rainfall. This study was carried out to investigate how super-hydrophobic lichens manage water uptake and repellence at their fruiting bodies, or podetia. Drops of water were placed onto separate podetia of Cladonia chlorophaea and observed using optical microscopy and cryo-scanning-electron microscopy (cryo-SEM) techniques to determine the structure of podetia and to visualise their interaction with water droplets. SEM and optical microscopy studies revealed that the surface of the podetia was constructed in a three-level structural hierarchy. By cryo-SEM of water-glycerol droplets placed on the upper part of the podetium, pinning of the droplet to specific, hydrophilic spots (pycnidia/apothecia) was observed. The results suggest a mechanism for water uptake, which is highly sophisticated, using surface wettability to generate a passive response to different types of precipitation in a manner similar to the Namib Desert beetle. This mechanism is likely to be found in other organisms as it offers passive but selective water control

    Cave spiders choose optimal environmental factors with respect to the generated entropy when laying their cocoon

    Get PDF
    The choice of a suitable area to spiders where to lay eggs is promoted in terms of Darwinian fitness. Despite its importance, the underlying factors behind this key decision are generally poorly understood. Here, we designed a multidisciplinary study based both on in-field data and laboratory experiments focusing on the European cave spider Meta menardi (Araneae, Tetragnathidae) and aiming at understanding the selective forces driving the female in the choice of the depositional area. Our in-field data analysis demonstrated a major role of air velocity and distance from the cave entrance within a particular cave in driving the female choice. This has been interpreted using a model based on the Entropy Generation Minimization - EGM - method, without invoking best fit parameters and thanks to independent lab experiments, thus demonstrating that the female chooses the depositional area according to minimal level of thermo-fluid-dynamic irreversibility. This methodology may pave the way to a novel approach in understanding evolutionary strategies for other living organisms
    corecore