400 research outputs found

    Sapucaia nut (Lecythis pisonis Cambess) and its by-products: a promising and underutilized source of bioactive compounds. Part II: phenolic compounds profile.

    Get PDF
    In this study, the profile of the bioactive compounds of sapucaia nut (Lecythis pisonis Cambess) and its byproducts have been investigated. The phenolic profile by LC-ESI-MS/MS, the total phenolic content, the condensed tannins and the antioxidant activity of the sapucaia nut and shell were determined. 14 phenolic compounds were identified in the sapucaia nut extract, primarily phenolic acids and flavonoids. Catechin, epicatechin, myricetin, ellagic acid and ferulic acid presented significant correlation to the antioxidant activity. The sapucaia shell contained 22 phenolic compounds, 13 of which were quantified. The sapucaia shell extract showed a high content of total phenolic compounds, a high condensed tannins content, and high antioxidant activity. The higher antioxidant activity of the shell can be associated with a higher content of phenolics. Overall, it can be concluded that the sapucaia nut is a raw material rich in phenolic compounds that present high antioxidant activity. The nuts and the cake may be used as a promising raw material for the food industry, while the shells could be an alternative source of natural antioxidants. Further use in the cosmetics and pharmaceutical industry may also be envisaged. 1. Introduction Lecythis pisonis

    Spatial Immunology in Liver Metastases from Colorectal Carcinoma according to the Histologic Growth Pattern

    Get PDF
    In the era of immunotherapy, the tumor microenvironment (TME) has attracted special interest. However, colorectal liver metastases (CRC-LM) present histological peculiarities that could affect the interaction of immune and tumor cells such as fibrotic encapsulation and dense intratumoral stroma. We explored the spatial distribution of lymphocytic infiltrates in CRC-LM in the context of the histologic growth patterns using multispectral digital pathology providing data on three different scenarios, tumor periphery, invasive margin, and central tumoral areas. Our results illustrate a similar poor cell density of CD8(+) cells between different metastases subtypes in intratumoral regions. However, in encapsulated metastases, cytotoxic cells reach the tumor cells while remaining retained in stromal areas in non-encapsulating metastases. Some aspects are still unresolved, such as understanding the reason why most lymphocytes are largely retained in the capsule. Colorectal cancer liver metastases (CRC-LM) present differential histologic growth patterns (HGP) that determine the interaction between immune and tumor cells. We explored the spatial distribution of lymphocytic infiltrates in CRC-LM in the context of the HGP using multispectral digital pathology. We did not find statistically significant differences of immune cell densities in the central regions of desmoplastic ((d)HGP) and non-desmoplastic ((nd)HGP) metastases. The spatial evaluation reported that (d)HGP-metastases displayed higher infiltration by CD8(+) and CD20(+) cells in peripheral regions as well as CD4(+) and CD45RO(+) cells in (nd)HGP-metastases. However, the reactive stroma regions at the invasive margin (IM) of (nd)HGP-metastases displayed higher density of CD4(+), CD20(+), and CD45RO(+) cells. The antitumor status of the TIL infiltrates measured as CD8/CD4 reported higher values in the IM of encapsulated metastases up to 400 mu m towards the tumor center (p < 0.05). Remarkably, the IM of (d)HGP-metastases was characterized by higher infiltration of CD8(+) cells in the epithelial compartment parameter assessed with the ratio CD8(epithelial)/CD8(stromal), suggesting anti-tumoral activity in the encapsulating lesions. Taking together, the amount of CD8(+) cells is comparable in the IM of both HGP metastases types. However, in (d)HGP-metastases some cytotoxic cells reach the tumor nests while remaining retained in the stromal areas in (nd)HGP-metastases

    Importance of Magnesium Status in COVID-19

    Get PDF
    A large amount of published research points to the interesting concept (hypothesis) that magnesium (Mg) status may have relevance for the outcome of COVID-19 and that Mg could be protective during the COVID disease course. As an essential element, Mg plays basic biochemical, cellular, and physiological roles required for cardiovascular, immunological, respiratory, and neurological functions. Both low serum and dietary Mg have been associated with the severity of COVID-19 outcomes, including mortality; both are also associated with COVID-19 risk factors such as older age, obesity, type 2 diabetes, kidney disease, cardiovascular disease, hypertension, and asthma. In addition, populations with high rates of COVID-19 mortality and hospitalization tend to consume diets high in modern processed foods, which are generally low in Mg. In this review, we review the research to describe and consider the possible impact of Mg and Mg status on COVID-19 showing that (1) serum Mg between 2.19 and 2.26 mg/dL and dietary Mg intakes &gt; 329 mg/day could be protective during the disease course and (2) inhaled Mg may improve oxygenation of hypoxic COVID-19 patients. In spite of such promise, oral Mg for COVID-19 has thus far been studied only in combination with other nutrients. Mg deficiency is involved in the occurrence and aggravation of neuropsychiatric complications of COVID-19, including memory loss, cognition, loss of taste and smell, ataxia, confusion, dizziness, and headache. Potential of zinc and/or Mg as useful for increasing drug therapy effectiveness or reducing adverse effect of anti-COVID-19 drugs is reviewed. Oral Mg trials of patients with COVID-19 are warranted

    Role of the progesterone receptor for paclitaxel resistance in primary breast cancer

    Get PDF
    Paclitaxel plays an important role in the treatment of primary breast cancer. However, a substantial proportion of patients treated with paclitaxel does not appear to derive any benefit from this therapy. We performed a prospective study using tumour cells isolated from 50 primary breast carcinomas. Sensitivity of primary tumour cells to paclitaxel was determined in a clinically relevant range of concentrations (0.85–27.2 μg ml−1 paclitaxel) using an ATP assay. Chemosensitivity data were used to study a possible association with immunohistochemically determined oestrogen and progesterone receptor (ER and PR) status, as well as histopathological parameters. Progesterone receptor (PR) mRNA expression was also determined by quantitative RT–PCR. We observed a clear association of the PR status with chemosensitivity to paclitaxel. Higher levels of immunohistochemically detected PR expression correlated with decreased chemosensitivity (P=0.008). Similarly, high levels of PR mRNA expression were associated with decreased paclitaxel chemosensitivity (P=0.007). Cells from carcinomas with T-stages 3 and 4 were less sensitive compared to stages 1 and 2 (P=0.013). Multiple regression analysis identified PR receptor status and T-stage as independent predictors of paclitaxel chemosensitivity, whereas the ER, N-stage, grading and age were not influential. In conclusion, in vitro sensitivity to paclitaxel was higher for PR-negative compared with PR-positive breast carcinoma cells. Thus, PR status should be considered as a possible factor of influence when designing new trials and chemotherapy protocols

    Повышение доходности лесоохотничьих хозяйств на основе развития новых туристических услуг

    Get PDF
    The comprehensive transcriptomic analysis of clinically annotated human tissue has found widespread use in oncology, cell biology, immunology, and toxicology. In cancer research, microarray-based gene expression profiling has successfully been applied to subclassify disease entities, predict therapy response, and identify cellular mechanisms. Public accessibility of raw data, together with corresponding information on clinicopathological parameters, offers the opportunity to reuse previously analyzed data and to gain statistical power by combining multiple datasets. However, results and conclusions obviously depend on the reliability of the available information. Here, we propose gene expression-based methods for identifying sample misannotations in public transcriptomic datasets. Sample mix-up can be detected by a classifier that differentiates between samples from male and female patients. Correlation analysis identifies multiple measurements of material from the same sample. The analysis of 45 datasets (including 4913 patients) revealed that erroneous sample annotation, affecting 40 % of the analyzed datasets, may be a more widespread phenomenon than previously thought. Removal of erroneously labelled samples may influence the results of the statistical evaluation in some datasets. Our methods may help to identify individual datasets that contain numerous discrepancies and could be routinely included into the statistical analysis of clinical gene expression data

    A Gestational High Protein Diet Affects the Abundance of Muscle Transcripts Related to Cell Cycle Regulation throughout Development in Porcine Progeny

    Get PDF
    BACKGROUND: In various animal models pregnancy diets have been shown to affect offspring phenotype. Indeed, the underlying programming of development is associated with modulations in birth weight, body composition, and continual diet-dependent modifications of offspring metabolism until adulthood, producing the hypothesis that the offspring's transcriptome is permanently altered depending on maternal diet. METHODOLOGY/PRINCIPAL FINDINGS: To assess alterations of the offspring's transcriptome due to gestational protein supply, German Landrace sows were fed isoenergetic diets containing protein levels of either 30% (high protein--HP) or 12% (adequate protein--AP) throughout their pregnancy. Offspring muscle tissue (M. longissimus dorsi) was collected at 94 days post conception (dpc), and 1, 28, and 188 days post natum (dpn) for use with Affymetrix GeneChip Porcine Genome Arrays and subsequent statistical and Ingenuity pathway analyses. Numerous transcripts were found to have altered abundance at 94 dpc and 1 dpn; at 28 dpn no transcripts were altered, and at 188 dpn only a few transcripts showed a different abundance between diet groups. However, when assessing transcriptional changes across developmental time points, marked differences were obvious among the dietary groups. Depending on the gestational dietary exposure, short- and long-term effects were observed for mRNA expression of genes related to cell cycle regulation, energy metabolism, growth factor signaling pathways, and nucleic acid metabolism. In particular, the abundance of transcripts related to cell cycle remained divergent among the groups during development. CONCLUSION: Expression analysis indicates that maternal protein supply induced programming of the offspring's genome; early postnatal compensation of the slight growth retardation obvious at birth in HP piglets resulted, as did a permanently different developmental alteration and responsiveness to the common environment of the transcriptome. The transcriptome modulations are interpreted as the molecular equivalent of developmental plasticity of the offspring that necessitates adaptation and maintenance of the organismal phenotype

    Ultra-thin polymer foil cryogenic window for antiproton deceleration and storage

    Get PDF
    We present the design and characterization of a cryogenic window based on an ultra-thin aluminized biaxially oriented polyethylene terephthalate foil at T < 10 K, which can withstand a pressure difference larger than 1 bar at a leak rate < 1 × 1 0 − 9 mbar l/s. Its thickness of ∼1.7 μm makes it transparent to various types of particles over a broad energy range. To optimize the transfer of 100 keV antiprotons through the window, we tested the degrading properties of different aluminum coated polymer foils of thicknesses between 900 and 2160 nm, concluding that 1760 nm foil decelerates antiprotons to an average energy of 5 keV. We have also explicitly studied the permeation as a function of coating thickness and temperature and have performed extensive thermal and mechanical endurance and stress tests. Our final design integrated into the experiment has an effective open surface consisting of seven holes with a diameter of 1 mm and will transmit up to 2.5% of the injected 100 keV antiproton beam delivered by the Antiproton Decelerator and Extra Low ENergy Antiproton ring facility of CERN

    An integrative proteomics method identifies a regulator of translation during stem cell maintenance and differentiation

    Get PDF
    To characterize molecular changes during cell type transitions, the authors develop a method to simultaneously measure protein expression and thermal stability changes. They apply this approach to study differences between human pluripotent stem cells, their progenies, parental and allogeneic cells. Detailed characterization of cell type transitions is essential for cell biology in general and particularly for the development of stem cell-based therapies in regenerative medicine. To systematically study such transitions, we introduce a method that simultaneously measures protein expression and thermal stability changes in cells and provide the web-based visualization tool ProteoTracker. We apply our method to study differences between human pluripotent stem cells and several cell types including their parental cell line and differentiated progeny. We detect alterations of protein properties in numerous cellular pathways and components including ribosome biogenesis and demonstrate that modulation of ribosome maturation through SBDS protein can be helpful for manipulating cell stemness in vitro. Using our integrative proteomics approach and the web-based tool, we uncover a molecular basis for the uncoupling of robust transcription from parsimonious translation in stem cells and propose a method for maintaining pluripotency in vitro

    Ultra thin polymer foil cryogenic window for antiproton deceleration and storage

    Full text link
    We present the design and characterisation of a cryogenic window based on an ultra-thin aluminised PET foil at T < 10K, which can withstand a pressure difference larger than 1bar at a leak rate < 1×1091\times 10^{-9} mbar\cdot l/s. Its thickness of approximately 1.7 μ\mum makes it transparent to various types of particles over a broad energy range. To optimise the transfer of 100keV antiprotons through the window, we tested the degrading properties of different aluminium coated PET foils of thicknesses between 900nm and 2160nm, concluding that 1760nm foil decelerates antiprotons to an average energy of 5 keV. We have also explicitly studied the permeation as a function of coating thickness and temperature, and have performed extensive thermal and mechanical endurance and stress tests. Our final design integrated into the experiment has an effective open surface consisting of 7 holes with 1 mm diameter and will transmit up to 2.5% of the injected 100keV antiproton beam delivered by the AD/ELENA-facility of CERN
    corecore