63 research outputs found

    The role of the energy equation in the fragmentation of protostellar discs during stellar encounters

    Get PDF
    In this paper, we use high-resolution smoothed particle hydrodynamics (SPH) simulations to investigate the response of a marginally stable self-gravitating protostellar disc to a close parabolic encounter with a companion discless star. Our main aim is to test whether close brown dwarfs or massive planets can form out of the fragmentation of such discs. We follow the thermal evolution of the disc by including the effects of heating due to compression and shocks and a simple prescription for cooling and find results that contrast with previous isothermal simulations. In the present case we find that fragmentation is inhibited by the interaction, due to the strong effect of tidal heating, which results in a strong stabilization of the disc. A similar behaviour was also previously observed in other simulations involving discs in binary systems. As in the case of isolated discs, it appears that the condition for fragmentation ultimately depends on the cooling rate.Comment: 9 pages, 10 figures, accepted in MNRA

    High-resolution Millimeter Imaging of the CI Tau Protoplanetary Disk: A Massive Ensemble of Protoplanets from 0.1 to 100 au

    Get PDF
    © 2018. The American Astronomical Society. All rights reserved. We present high-resolution millimeter continuum imaging of the disk surrounding the young star CI Tau, a system hosting the first hot Jupiter candidate in a protoplanetary disk system. The system has extended mm emission on which are superposed three prominent annular gaps at radii ∌13, 39, and 100 au. We argue that these gaps are most likely to be generated by massive planets so that, including the hot Jupiter, the system contains four gas giant planets at an age of only 2 Myr. Two of the new planets are similarly located to those inferred in the famous HL Tau protoplanetary disk; in CI Tau, additional observational data enables a more complete analysis of the system properties than was possible for HL Tau. Our dust and gas dynamical modeling satisfies every available observational constraint and points to the most massive ensemble of exoplanets ever detected at this age, with its four planets spanning a factor 1000 in orbital radius. Our results show that the association between hot Jupiters and gas giants on wider orbits, observed in older stars, is apparently in place at an early evolutionary stage

    High-resolution ALMA observations of HD100546 : asymmetric circumstellar ring, and circumplanetary disk upper limits

    Get PDF
    We present long baseline Atacama Large Millimeter/submillimeter Array (ALMA) observations of the 870ÎŒm dust continuum emission and CO (3-2) from the protoplanetary disk around the Herbig Ae/Be star HD 100546, which is one of the few systems claimed to have two young embedded planets. These observations achieve a resolution of 4 au (3.8 mas), an rms noise of 66ÎŒJy/beam, and reveal an asymmetric ring between ∌20-40 au with largely optically thin dust continuum emission. This ring is well fit by two concentric and overlapping Gaussian rings of different widths and a Vortex. In addition, an unresolved component is detected at a position consistent with the central star, which may trace the central inner disk (<2au in radius). We report a lack of compact continuum emission at the positions of both claimed protoplanets. We use this result to constrain the circumplanetary disk (CPD) mass and size of 1.44MEarth and 0.44au in the optically thin and thick regime, respectively, for the case of the previously directly imaged protoplanet candidate at ∌55 au (HD100546 b). We compare these empirical CPD constraints to previous numerical simulations. This suggests that HD100546 b is inconsistent with several planet accretion models, while gas-starved models are also still compatible. We estimate the planetary mass as 1.65 MJ by using the relation between planet, circumstellar, and circumplanetary masses derived from numerical simulations. Finally, the CO integrated intensity map shows a possible spiral arm feature that would match the spiral features identified in Near-Infrared scattered light polarized emission, which suggests a real spiral feature in the disk surface that needs to be confirmed with further observations

    Planetesimal Formation In Self-Gravitating Discs

    Full text link
    We study particle dynamics in local two-dimensional simulations of self-gravitating accretion discs with a simple cooling law. It is well known that the structure which arises in the gaseous component of the disc due to a gravitational instability can have a significant effect on the evolution of dust particles. Previous results using global simulations indicate that spiral density waves are highly efficient at collecting dust particles, creating significant local over-densities which may be able to undergo gravitational collapse. We expand on these findings, using a range of cooling times to mimic the conditions at a large range of radii within the disc. Here we use the Pencil Code to solve the 2D local shearing sheet equations for gas on a fixed grid together with the equations of motion for solids coupled to the gas solely through aerodynamic drag force. We find that spiral density waves can create significant enhancements in the surface density of solids, equivalent to 1-10cm sized particles in a disc following the profiles of Clarke (2009) around a solar mass star, causing it to reach concentrations several orders of magnitude larger than the particles mean surface density. We also study the velocity dispersion of the particles, finding that the spiral structure can result in the particle velocities becoming highly ordered, having a narrow velocity dispersion. This implies low relative velocities between particles, which in turn suggests that collisions are typically low energy, lessening the likelihood of grain destruction. Both these findings suggest that the density waves that arise due to gravitational instabilities in the early stages of star formation provide excellent sites for the formation of large, planetesimal-sized objects.Comment: 11 pages, 8 figures, accepted for publication in MNRA

    A Triple Protostar System Formed via Fragmentation of a Gravitationally Unstable Disk

    Get PDF
    Binary and multiple star systems are a frequent outcome of the star formation process, and as a result, almost half of all sun-like stars have at least one companion star. Theoretical studies indicate that there are two main pathways that can operate concurrently to form binary/multiple star systems: large scale fragmentation of turbulent gas cores and filaments or smaller scale fragmentation of a massive protostellar disk due to gravitational instability. Observational evidence for turbulent fragmentation on scales of >>1000~AU has recently emerged. Previous evidence for disk fragmentation was limited to inferences based on the separations of more-evolved pre-main sequence and protostellar multiple systems. The triple protostar system L1448 IRS3B is an ideal candidate to search for evidence of disk fragmentation. L1448 IRS3B is in an early phase of the star formation process, likely less than 150,000 years in age, and all protostars in the system are separated by <<200~AU. Here we report observations of dust and molecular gas emission that reveal a disk with spiral structure surrounding the three protostars. Two protostars near the center of the disk are separated by 61 AU, and a tertiary protostar is coincident with a spiral arm in the outer disk at a 183 AU separation. The inferred mass of the central pair of protostellar objects is ∌\sim1 Msun_{sun}, while the disk surrounding the three protostars has a total mass of ∌\sim0.30 M_{\sun}. The tertiary protostar itself has a minimum mass of ∌\sim0.085 Msun_{sun}. We demonstrate that the disk around L1448 IRS3B appears susceptible to disk fragmentation at radii between 150~AU and 320~AU, overlapping with the location of the tertiary protostar. This is consistent with models for a protostellar disk that has recently undergone gravitational instability, spawning one or two companion stars.Comment: Published in Nature on Oct. 27th. 24 pages, 8 figure

    Circumstellar discs: What will be next?

    Full text link
    This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.Comment: invited review; comments welcome (32 pages

    Stability of self-gravitating discs under irradiation

    Full text link
    Self-gravity becomes competitive as an angular momentum transport process in accretion discs at large radii, where the temperature is low enough that external irradiation likely contributes to the thermal balance. Irradiation is known to weaken the strength of disc self-gravity, and can suppress it entirely if the disc is maintained above the threshold for linear instability. However, its impact on the susceptibility of the disc to fragmentation is less clear. We use two-dimensional numerical simulations to investigate the evolution of self-gravitating discs as a function of the local cooling time and strength of irradiation. In the regime where the disc does not fragment, we show that local thermal equilibrium continues to determine the stress - which can be represented as an effective viscous alpha - out to very long cooling times (at least 240 dynamical times). In this regime, the power spectrum of the perturbations is uniquely set by the effective viscous alpha and not by the cooling rate. Fragmentation occurs for cooling times tau < beta_crit / Omega, where beta_crit is a weak function of the level of irradiation. We find that beta_crit declines by approximately a factor of two, as irradiation is increased from zero up to the level where instability is almost quenched. The numerical results imply that irradiation cannot generally avert fragmentation of self-gravitating discs at large radii; if other angular momentum transport sources are weak mass will build up until self-gravity sets in, and fragmentation will ensue.Comment: MNRAS, in pres

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    Mass Determinations of the Three Mini-Neptunes Transiting TOI-125

    Get PDF
    The Transiting Exoplanet Survey Satellite, TESS, is currently carrying out an all-sky search for small planets transiting bright stars. In the first year of the TESS survey, a steady progress was made in achieving the mission’s primary science goal of establishing bulk densities for 50 planets smaller than Neptune. During that year, the TESS’s observations were focused on the southern ecliptic hemisphere, resulting in the discovery of three mini-Neptunes orbiting the star TOI-125, a V = 11.0 K0 dwarf. We present intensive HARPS radial velocity observations, yielding precise mass measurements for TOI-125b, TOI-125c, and TOI-125d. TOI-125b has an orbital period of 4.65 d, a radius of 2.726 ± 0.075 RE, a mass of 9.50 ± 0.88 ME, and is near the 2:1 mean motion resonance with TOI-125c at 9.15 d. TOI-125c has a similar radius of 2.759 ± 0.10 RE and a mass of 6.63 ± 0.99 ME, being the puffiest of the three planets. TOI-125d has an orbital period of 19.98 d and a radius of 2.93 ± 0.17 RE and mass 13.6 ± 1.2 ME. For TOI-125b and d, we find unusual high eccentricities of 0.19 ± 0.04 and 0.17+0.08−0.06⁠, respectively. Our analysis also provides upper mass limits for the two low-SNR planet candidates in the system; for TOI-125.04 (RP = 1.36 RE, P = 0.53 d), we find a 2σ upper mass limit of 1.6 ME, whereas TOI-125.05 (⁠RP=4.2+2.4−1.4 RE, P = 13.28 d) is unlikely a viable planet candidate with an upper mass limit of 2.7 ME. We discuss the internal structure of the three confirmed planets, as well as dynamical stability and system architecture for this intriguing exoplanet system

    Long-term survival after initial hospital admission for peripheral arterial disease in the lower extremities

    Get PDF
    ABSTRACT: Background As the population ages, peripheral arterial disease (PAD) in the lower extremities will become a larger public health problem. Awareness in patients as well clinicians of the high risk of morbidity and mortality is important but seems currently low. Insights in absolute mortality risks following admission for PAD in the lower extremities can be useful to improve awareness as they are easy to interpret. Methods A nationwide cohort of 4,158 patients with an initial admission for PAD in the lower extremities was identified through linkage of the national hospital and population register in 1997 and 2000. Results Over 60% of 4,158 patients were men. 28 days, 1 year and 5 year mortality risk were 2.4%, 10.3% and 31.0% for men and 3.5%, 10.4% and 27.4% for women. Coronary heart disease and stroke were frequent cause of death. Five years mortality risk was higher for men compared to women (HR 1.36, 95% CI 1.21-1.53). Conclusions Our findings demonstrate that, 5 year mortality risk is high, especially in men and comparable to that of patients admitted for acute myocardial infarction or ischemic stroke. Though, in general population the awareness of the severity of PAD in the lower extremities is significantly lower than that for any other cardiovascular disease and it seems that cardiovascular risk factor management for prevention in PAD patients is very modes
    • 

    corecore