1,479 research outputs found

    DEAN: A program for dynamic engine analysis

    Get PDF
    The Dynamic Engine Analysis program, DEAN, is a FORTRAN code implemented on the IBM/370 mainframe at NASA Lewis Research Center for digital simulation of turbofan engine dynamics. DEAN is an interactive program which allows the user to simulate engine subsystems as well as a full engine systems with relative ease. The nonlinear first order ordinary differential equations which define the engine model may be solved by one of four integration schemes, a second order Runge-Kutta, a fourth order Runge-Kutta, an Adams Predictor-Corrector, or Gear's method for still systems. The numerical data generated by the model equations are displayed at specified intervals between which the user may choose to modify various parameters affecting the model equations and transient execution. Following the transient run, versatile graphics capabilities allow close examination of the data. DEAN's modeling procedure and capabilities are demonstrated by generating a model of simple compressor rig

    Stability of a horizontal viscous fluid layer in a vertical time periodic electric field

    Full text link
    The stability of a horizontal interface between two viscous fluids, one of which is conducting and the other is dielectric, acted upon by a vertical time-periodic electric field is considered. The two fluids are bounded by electrodes separated by a finite distance. By means of Floquet theory, the marginal stability curves are obtained, thereby elucidating the dependency of the critical voltage and wavenumber upon the fluid viscosities. The limit of vanishing viscosities is shown to be in excellent agreement with the marginal stability curves predicted by means of a Mathieu equation. The methodology to obtain the marginal stability curves developed here is applicable to any arbitrary but time periodic-signal, as demonstrated for the case of a signal with two different frequencies. As a special case, the marginal stability curves for an applied ac voltage biased by a dc voltage are depicted. It is shown that the mode coupling caused by the normal stress at the interface due to the electric field leads to appearance of harmonic modes and subharmonic modes. This is in contrast to the application of a voltage with a single frequency which always leads to a harmonic mode. Whether a harmonic or subharmonic mode is the most unstable one depends on details of the excitation signal. It is also shown that the electrode spacing has a distinct effect on the stability bahavior of the system

    A Sensor Failure Simulator for Control System Reliability Studies

    Get PDF
    A real-time Sensor Failure Simulator (SFS) was designed and assembled for the Advanced Detection, Isolation, and Accommodation (ADIA) program. Various designs were considered. The design chosen features an IBM-PC/XT. The PC is used to drive analog circuitry for simulating sensor failures in real-time. A user defined scenario describes the failure simulation for each of the five incoming sensor signals. Capabilities exist for editing, saving, and retrieving the failure scenarios. The SFS has been tested closed-loop with the Controls Interface and Monitoring (CIM) unit, the ADIA control, and a real-time F100 hybrid simulation. From a productivity viewpoint, the menu driven user interface has proven to be efficient and easy to use. From a real-time viewpoint, the software controlling the simulation loop executes at greater than 100 cycles/sec

    Nonlinear Stability of Static N\'eel Walls in Ferromagnetic Thin Films

    Full text link
    In this paper, the nonlinear (orbital) stability of static 180^\circ N\'eel walls in ferromagnetic films, under the reduced wave-type dynamics for the in-plane magnetization proposed by Capella, Melcher and Otto [CMO07], is established. It is proved that the spectrum of the linearized operator around the static N\'eel wall lies in the stable complex half plane with non-positive real part. This information is used to show that small perturbations of the static N\'eel wall converge to a translated orbit belonging to the manifold generated by the static wall.Comment: 45 page

    EFFECTS OF BACKWARD WALKING AS A MODALITY FOR LOW BACK PAIN REDUCTION IN ATHLETES

    Get PDF
    The therapeutic effectiveness of backward walking for treatment of low back pain (LBP) was examined among athletes experiencing LBP and healthy non-athletes. All participants were pre-tested walking backward, performed 10-15 mins of backward walking three days/week for three weeks and were post-tested. Low back sagittal and coronal plane range of motion, shock attenuation (SA), stride length (SL), stride rate (SR), velocity and LBP were evaluated (α=0.05). All variables were significantly different between groups, excluding SA. Velocity, SL and SR were significantly different pre vs post. Owing to the clinical nature of this study, single-subject analyses were performed and identified unique individual responses to the intervention. Results suggest that backward walking may assist some athletes presenting with LBP

    DC-conductivity of a suspension of insulating particles with internal rotation

    Full text link
    We analyse the consequences of Quincke rotation on the conductivity of a suspension. Quincke rotation refers to the spontaneous rotation of insulating particles dispersed in a slightly conducting liquid and subject to a high DC electric field: above a critical field, each particle rotates continuously around itself with an axis pointing in any direction perpendicular to the DC field. When the suspension is subject to an electric field lower than the threshold one, the presence of insulating particles in the host liquid decreases the bulk conductivity since the particles form obstacles to ion migration. But for electric fields higher than the critical one, the particles rotate and facilitate ion migration: the effective conductivity of the suspension is increased. We provide a theoretical analysis of the impact of Quincke rotation on the apparent conductivity of a suspension and we present experimental results obtained with a suspension of PMMA particles dispersed in weakly conducting liquids

    Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements

    Get PDF
    SummaryWhen processing dynamic input, the brain balances the opposing needs of temporal integration and sensitivity to change. We hypothesized that the visual system might resolve this challenge by aligning integration windows to the onset of newly arriving sensory samples. In a series of experiments, human participants observed the same sequence of two displays separated by a brief blank delay when performing either an integration or segregation task. First, using magneto-encephalography (MEG), we found a shift in the stimulus-evoked time courses by a 150-ms time window between task signals. After stimulus onset, multivariate pattern analysis (MVPA) decoding of task in occipital-parietal sources remained above chance for almost 1 s, and the task-decoding pattern interacted with task outcome. In the pre-stimulus period, the oscillatory phase in the theta frequency band was informative about both task processing and behavioral outcome for each task separately, suggesting that the post-stimulus effects were caused by a theta-band phase shift. Second, when aligning stimulus presentation to the onset of eye fixations, there was a similar phase shift in behavioral performance according to task demands. In both MEG and behavioral measures, task processing was optimal first for segregation and then integration, with opposite phase in the theta frequency range (3–5 Hz). The best fit to neurophysiological and behavioral data was given by a dampened 3-Hz oscillation from stimulus or eye fixation onset. The alignment of temporal integration windows to input changes found here may serve to actively organize the temporal processing of continuous sensory input

    Measles virus causes immunogenic cell death in human melanoma

    Get PDF
    Oncolytic viruses (OV) are promising treatments for cancer, with several currently undergoing testing in randomised clinical trials. Measles virus (MV) has not yet been tested in models of human melanoma. This study demonstrates the efficacy of MV against human melanoma. It is increasingly recognised that an essential component of therapy with OV is the recruitment of host anti-tumour immune responses, both innate and adaptive. MV-mediated melanoma cell death is an inflammatory process, causing the release of inflammatory cytokines including type-1 interferons and the potent danger signal HMGB1. Here, using human in vitro models, we demonstrate that MV enhances innate antitumour activity, and that MV-mediated melanoma cell death is capable of stimulating a melanoma-specific adaptive immune response

    Single-cycle viral gene expression, rather than progressive replication and oncolysis, is required for VSV therapy of B16 melanoma

    Get PDF
    A fully intact immune system would be expected to hinder the efficacy of oncolytic virotherapy by inhibiting viral replication. Simultaneously, however, it may also enhance antitumor therapy through initiation of proinflammatory, antiviral cytokine responses at the tumor site. The aim of this study was to investigate the role of a fully intact immune system on the antitumor efficacy of an oncolytic virus. In this respect, injection of oncolytic vesicular stomatitis virus (VSV) into subcutaneous B16ova melanomas in C57Bl/6 mice leads to tumor regression, but it is not associated with viral replicative burst in the tumor. In contrast, intratumoral delivery of VSV induces an acute proinflammatory reaction, which quickly resolves concomitantly with virus clearance. Consistent with the hypothesis that therapy may not be dependent on the ability of VSV to undergo progressive rounds of replication, a single-cycle VSV is equally effective as a fully replication-competent VSV, whereas inactivated viruses do not generate therapy. Even though therapy is dependent on host CD8+ and natural killer cells, these effects are not associated with interferon-γ-dependent responses against either the virus or tumor. There is, however, a strong correlation between viral gene expression, induction of proinflammatory reaction in the tumor and in vivo therapy. Overall, our results suggest that acute innate antiviral immune response, which rapidly clears VSV from B16ova tumors, is associated with the therapy observed in this model. Therefore, the antiviral immune response to an oncolytic virus mediates an intricate balance between safety, restriction of oncolysis and, potentially, significant immune-mediated antitumor therapy

    Brains of verbal memory specialists show anatomical differences in language, memory and visual systems

    Get PDF
    Abstract We studied a group of verbal memory specialists to determine whether intensive oral text memory is associated with structural features of hippocampal and lateral-temporal regions implicated in language processing. Professional Vedic Sanskrit Pandits in India train from childhood for around 10 years in an ancient, formalized tradition of oral Sanskrit text memorization and recitation, mastering the exact pronunciation and invariant content of multiple 40,000–100,000 word oral texts. We conducted structural analysis of gray matter density, cortical thickness, local gyrification, and white matter structure, relative to matched controls. We found massive gray matter density and cortical thickness increases in Pandit brains in language, memory and visual systems, including i ) bilateral lateral temporal cortices and ii ) the anterior cingulate cortex and the hippocampus, regions associated with long and short-term memory. Differences in hippocampal morphometry matched those previously documented for expert spatial navigators and individuals with good verbal working memory. The findings provide unique insight into the brain organization implementing formalized oral knowledge systems
    • …
    corecore