
. ..

NASA Technical Memorandum 87271
• NASA-TM-87271 19860022320

"~--------~

A Sensor Failure'Simulator- for Control
System Reliability Studies

Kevin J. Melcher, John C. Delaat, Walter C. Merrill,
Lawrence G. Oberle and Gerald G. Sadler
Lewis Research Center
Cleveland, Ohio

and

Joseph "H. Schaefer
United States Corps of Cadets
West Point, New York

July 1986

NI\SI\

LiBRARY COPY
OCT 2 31986

,LANGLEY RESEARCH CENTER

LIOfV\RY. NASA

HI\W~TON, VIRGINIA

, 111
NF01513

https://ntrs.nasa.gov/search.jsp?R=19860022320 2020-03-20T13:08:15+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42839754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

\\\\1 \\\ \\\ \ \\1 \ ~~~~ \~{~\\\\\\i\ \~~\i\~\ \\1 \ \\\ \\\ \ \ \ \\
3 1176014277660

A SENSOR FAILURE SIMULATOR FOR CONTROL SYSTEM RELIABILITY STUDIES

Kev1n J. Melcher, John C. Delaat, Walter C. Merr1ll,
Lawrence G. Oberle, and Gerald G. Sadler

Nat10nal Aeronaut1cs and Space Adm1n1strat10n
Lew1s Research Center
Cleveland, Oh10 44135

and

Joseph H. Schaefer
Un1ted States Corps of Cadets

West P01nt, New York

SUMMARY

A real-t1me Sensor Fa11ure Simulator (SFS) was des1gned and assembled for
the Advanced Detection, Isolation, and Accommodation (ADIA) program. Var10us
des1gns were considered. The des1gn chosen features an IBM-PC/XT. The PC is
used to drive analog circuitry for s1mulat1ng sensor failures in ~eal-t1me. A
user def1ned scenario describes the fa11ure simulation for each of the five
1ncom1ng sensor signals. Capabilities exist for editing, saving, and retr1ev-
1ng the fa1lure scenar10s. The (SFS) has been tested closed-loop w1th the
Controls Interface and Mon1tor1ng (CIM) unit, the ADIA control, and a real-t1me
F100 hybr1d s1mulat1on. From a productivity v1ewpo1nt, the menu dr1ven user
1nterface has proven to be eff1c1ent and easy to use. From a real-t1me v1ew­
p01nt, the software controlling the s1mulat10n loop executes at greater than
100 cycles/sec.

INTRODUCTION

Th1s report describes a general purpose de~1ce wh1ch can s1mulate sensor
fa1lures 1n control systems. Th1s device, called the SFS, is personal computer
based, programmable, re11able, and flex1ble. It also prov1des repeatable fa11-
ure s1mulat10ns. W1th these features the SFS can be used to eff1c1ently eval­
uate and demonstrate sensor fa11ure detect10n 10g1c. The SFS 1nterface
includes f1ve separate analog s1gnal flow paths through the dev1ce w1th 1nde­
pendent d1g1tal control of mod1f1cat10ns (i.e., sensor fa11ures) made to the
analog s1gnals. The f1rst application of the SFS is s1mulat1on of sensor fa1l­
ures for the Advanced Detection, Isolat10n, and Accommodat10n (ADIA) program
(ref. 1).

The goals of the ADIA program are to develop, implement, evaluate, and
demonstrate an ADIA algor1thm. The development and real-t1me 1mplementat1on of
the algor1thm are described in reference 1. Algorithm performance was evalu­
ated us1ng a real-time hybrid computer simulation of the F100 eng1ne, the sen­
sor failure simulator, and the ADIA control (ref. 2). Finally, the algorithm
will be demonstrated on a full scale Pratt and Whitney F100 engine in the Lewis
Research Center's altitude facility. Both the ADIA control and the sensor
failure s1mulator will be used in th1s demonstrat10n.

This report describes the SFS which was developed for the ADIA program.
Included is a discussion of the design requirements as well as system concept
and philosophy. This is followed by a description of the hardware and the soft­
ware design. Finally a guide to operations for the simulator is given.

REQUIREMENTS

The SFS was developed for the ADIA program. The ADIA control currently
uses signals from five sensors: fan shaft speed.(Nl), compressor shaft speed
(N2), combustor exit pressure (PT4), low turbine exit pressure (PTG), and low
turbine inlet temperature (FTIT). The SFS was designed to modify any combina­
tion of the five ADIA sensor signals and send the modified (or failed) signals
to the ADIA control system under experimental test conditions. In order for
the SFS to properly perform this task, certain initial design requirements had
to be met.

The first requirement for the SFS was that.1t must model failures accord­
ing to the following equation:

Yout = (scale factor • Yin) + bias + noise

This equation describes a failure as the sum of: a scale factor multiplication
of the incoming sensor signal, a bias (step + ramp), and random white noise ..
By modeling failures in this manner (fig. 1), the SFS should allow a user to
simulate most of the types of failures observed in engine sensors.

The next requirement imposed on the SFS was an ability to maintain signal
integrity. The signals leaving the SFS must be the same as the in-coming sig­
nals in a normal/unfa11ed mode. If a discrete system is chosen, there should
be no significant sampling delay. Safety is also an important consideration.
A device failure, such as loss of power to the SFS, must not disrupt signal
flow in the normal mode. .

It was also required that the SFS be a stand alone, portable unit. The
simulator will be required to perform its task in several facilities. It must
first be located in the hybrid simulation facility at Lewis where it will be
validated. After validation in the hybrid lab, the simulator and control will
be moved to the Propulsion Systems Laboratory at Lewis. In this facility the
SFS will be used to test the ADIA control on a full scale F100 engine. It is
desirable that no disassembly/assembly need take place during this transition.

Another requirement was that the SFS have a convenient user interface with
reasonable programmability. The SFS should be simple to use and it should
provide for a high degree of productivity in an environment where overhead
costs are substantial. The time required to prepare a failure scenario between
data points should be minimal.

Finally, the SFS should demonstrate reliability, maintainability, predict­
ability, and repeatability. The SFS should be reliable, having a high mean
time between failures. Safety is a major concern when testing a full-scale
engine. A reliable simulator will be necessary to limit the risk involved when
testing the ADIA control with the F100 engine. During testing, engine sensor
signals will be failed intentionally to check the fault accommodation and

2

detection of the control. These actions may be catastrophic to the engine,
especially if valid engine sensor signals are not available at all times. For
these reasons, the design must meet the safety requirements of the Lewis safety
committee. Also, overhead costs tend to be high in an experimental environment.
Therefore, it was desirable to choose a design which could be easily maintained,
thus reducing downtime. A modular design would meet this requirement. Pre­
dictable and repeatable performance is also necessary as a basic characteristic
for a good research tool.

As a final requirement, development time for the SFS must be within the
constraints of the ADIA program schedule. This would suggest a design which
would be based primarily on commercially available hardware.

SYSTEM CONCEPT AND PHILOSOPHY

Various conceptual designs were suggested for the SFS. In all of the
designs a common underlying ph1losophy was evident. Th1s philosophy addresses
the failure modeling and the signal integrity requirements by combining a fail­
ure scenario controller with a direct analog signal path (fig. 2). The general
concept is to model failures using analog circuitry and to determ1ne the size
and timing of the scale factor, bias or noise failure components using the
scenario controller. It was decided early in the design process that digital
sample and hold hardware could not be perm1tted in the d1rect signal flow path
for both safety and performance reasons.

To ensure signal integrity during normal operation or in the event of a
loss of power to the SFS the following approach was adopted. Failure simula­
tion is initiated by a relay contract closure and terminated in the same man­
ner. The normally open relay contracts allow a direct, uninterrupted, signal
path during normal unfa11ed operation.

Four possible des1gns were suggested and stud1ed for their abi11ty to meet
the specified des1gn requ1rements. The four des1gns were: (1) custom m1cro­
computer dr1ven analog hardware, (2) personal computer dr1ven analog hardware,
(3) analog computer dr1ven analog hardware, and (4) programmable controller
driven analog hardware.

Each of the designs was considered for 1ts ability to meet the s1mulator
design requirements. The custom microcomputer based design met all requ1re­
ments except for development time constraints. It was not possible to build
and test the m1crocomputer design within scheduled deadlines. The personal
computer-based design met all of the design requirements. Required digital to
analog interface hardware was available "off the shelf." Custom development
would include the software, and analog summing circuit, and a communications
circuit for interfacing the PC with the Control Interface and Mon1tor1ng (CIM)
unit (ref. 3). It was determ1ned that this development could be accomplished
within the necessary time constra1nts. The str1ctly analog des1gn had several
deficiencies. The analog computer tends not to be user friendly and available
hardware is not portable. Also repeatab11ity and reliability are difficult to
obtain. The programmable controller based design was also determined to be
undesirable. The available programmable controller was designed for processes
with fixed logic. It was not designed to allow for program changes during
execution.

3

Based on the above requirements analysis, the PC/analog design was chosen
for the SFS. This design met all of the stated design requirements. Addi­
tionally, this design has the flexibility and generality to be used in other
failure detection studies and/or allow simulation of various other failure
models.

HARDWARE DESIGN

The design chosen for the SFS was based on a personal computer (PC)
interface/controller driving analog signal processor hardware. The PC used for
the SFS is a standard configuration IBM-PC/XT expanded to 640K bytes of memory.
An AST Six Pack/Plus expansion board was used for memory expansion. The AST
board also contains a clock which is used by the SFS software. An expansion
chassis with a PC interface houses most of the analog failure circuitry. This
circuitry is described in detail throughout the remainder of this section.

Figure 3 is a block diagram of the SFS hardware design. Three general
observations can be made about this design. Ftrst, the five engine sensor
signals are direct inputs to the normally closed terminals of the ERB-24A
switch matrix. In the normal/unfa1led mode, each of the engine signals com­
pletely bypasses the SFS and proceeds through the common terminals of the
switch matrix to the ADIA control. Second, the simulator may modify any number
of the five sensor signals by adding scale factor or bias errors to the ori­
ginal signal. A noise error may also be imposed on the any of the five sensor
signals, however it may be added to only one channel at a time. These modified
signals are fed to the normally open (NO) terminals of the switch matrix. The
computer may then select either a modified, or an unmodified signal for each of
the ADIA controller's five inputs. Third, the five engine signals are electri­
cally d1ffernet1al with no reference ground. The modified signals must be com­
patible in order to replace the unmodified signals. The simulator signals are
transformed into virtual-differential signals in the circuitry which combines
the contributions of the three error components: .scale factor, bias, and noise.
These components are each produced in slightly d1fferent ways.

The scale factor error, or multiplication of the incoming signal by a
constant, is generated by using a METRABYTE DAC-02 multiplying d1g1tal-to­
analog converter (MDAC) for each channel. The MDAC has two inputs, an analog
signal (in this case, one of the five engine signals) and a digitally encoded
number which the MDAC receives from the PC. The MDAC produces an analog volt­
age output equivalent to the product of its inputs. Each DAC-02 circuit board
contains two MDACs. Thus, to cover the five engine signals, three DAC-02 I s
must be employed.

The bias errors for the five signals are generated using a METRABYTE
DDA-06 dig1tal-to-analog converter (DAC). The DAC receives a digitally encoded
number from the computer representing the amount of bias to be added to the
in-coming analog signal, and generates an analog voltage, in the range ±lO V,
proportional to this number. The DDA-06 provides six such DAC's, which leaves
one spare channel for future use.

The noise error is generated by a commercially available analog random
noise generator. The output from the noise generator is scaled using the
spare MDAC from the scale factor circuitry. The output from the MDAC is then
switched to anyone of the five engine signals using spare relay channels on

4

the sw1tch matr1x. These spare relay channels are labelled ERB-24B 1n
f1gure 3. Both the sw1tch matr1x and the MDAC rece1ve the1r commands from the
computer. S1nce only one n01se s1gnal 1s generated, only one of the f1ve
eng1ne s1gnals can be mod1f1ed us1ng all three error components, at anyone
t1me. The other four s1gnals can be prov1ded w1th any comb1nat10n of scale
factor, and b1as1ng errors.

For each of the f1ve s1gnals, the mod1f1ed eng1ne s1gnal 1s generated by
summ1ng contr1but10ns from the scale factor, b1as and n01se error components;
us1ng an analog summ1ng c1rcu1t, as shown 1n f1gure 4. Th1s c1rcu1t was rep11-
cated exactly for each of the f1ve channels. It 1s a standard des1gn, us1ng
Zener d10des to l1m1t the summed voltages to ±10 V max1mum; and prov1d1ng a
v1rtual-d1fferent1al output voltage to the sw1tch matr1x. The second op-amp 1n
f1gure 4 1s prov1ded so that the summat10n 1s not 1nverted.

The DACs, MDACs and a custom analog s1gnal processor board are found 1n
the expans10n chass1s. A layout of the expans10n chass1s 1s shown 1n f1gure 5.
There are two unused card slots 1n the expans10n chass1s, but only one unused
connector 10cat10n, s1nce the analog s1gnal processor (ASP) board requ1res two
connectors.

A block d1agram of the ASP board 1s shown 1n f1gure 6. At connector AJl
are the ten l1nes represent1ng the f1ve d1fferent1al 1nput eng1ne s1gnals.
Each pa1r of these l1nes 1s an 1nput to a Burr-Brown 3630 Instrumentat10n
Amp11f1er w1th un1ty ga1n. The result1ng output, a s1ngle-ended s1gnal 1s one
of f1ve output s1gnals at connector AJ2. Also at connector AJ2 are 15 l1nes
(five triplets) representing s1gnals from the three failure components. These
s1gnals for scale factor error, b1as error, and random n01se are summed by one
of the f1ve summ1ng c1rcu1ts as descr1bed prev10usly. The f1ve result1ng
v1rtual-d1fferent1al mod1f1ed eng1ne s1gnals are then w1red v1a ten l1nes to
connector AJ1. The ASP board conta1ns the components and w1r1ng for the f1ve
1nstrumentat10n amp11f1ers, and the f1ve summ1ng and 1solat10n amp11f1ers.

The ASP board also conta1ns c1rcu1try for acommun1cat10ns 1nterface
between the Control Interface and Mon1tor1ng (CIM) un1t and the SFS. Th1s
app11cat10n spec1f1c hardware 1s prov1ded as a means of synchron1z1ng the
beg1nn1ng of fa1lure s1mulat10n w1th the beg1nn1ng of data tak1ng 1n the con­
trols computer. A D/A converter on the controls computer 1s used to send a
start s1gnal to the SFS 1nterface c1rcu1try (f1g. 7). On the ASP board, the
start s1gnal 1s f1rst converted from a d1fferent1al s1gnal to a s1ngle-ended
s1gnal us1ng an 1nstrumentat10n amp11f1er. A comparator 1s then used to detect
when the start s1gnal 1s h1gh and to convert 1t to TTL levels. F1nally, the
output of the comparator 1s sent to Port C of the 8255 ch1p on the DDA-06 board
where 1t can be detected by the SFS software.

The sw1tch matr1x chosen for th1s s1mulator 1s the METRABYTE ERB-24. The
ERB-24 prov1des 24 channels of double pole/double throw relays. Ten of these
relays are used by the SFS. Of all the components selected, the ERB-24 is the
only one wh1ch does not res1de on the PC bus. Due to 1ts s1ze th1s component
requ1red a separate chass1s. All 1nterface w1r1ng 1s done 1ns1de th1s chass1s.
The end panel for the ERB-24 chass1s 1s shown 1n f1gure 8. The e1ght connec­
tors labeled AJ1, AJ2, MJ1, MJ2, MJ3, Ell, DJ1, and EOl correspond to the two
connectors for the ASP board, the connectors for the three DAC-02 MDAC boards,
the eng1ne s1gnal 1nput connector, the connector for the DDA-06 DAC board, and

5

the engine signal output connector, respectively. The pin assignments for
these connectors are shown in tables I to VI.

SOFTWARE DESIGN

The SFS software was conceived as a menu driven program which would provide
four distinct capabilities: on-line program instruction, storage and retrieval
of failure scenarios, editing of failure scenarios, and real-time control of
the analog failure simulation hardware. The instruction capability was to be
designed as a means of providing operational instructions during program execu­
tion. These instructions should be both general and specific so that the SFS
would be as self contained as possible. The store/retrieve capability was to
allow the user to store and retrieve pre-defined failure scenarios. This cap­
ability would help provide the repeatability and high productivity so desired
in a research environment. The means of defining and modifying failure sce­
narios were provided by a failure scenario editor. This editor was to provide
an efficient and user-friendly method of modifying any or all of the components
which combine to form a failure scenario: the scenario description, the
fa1led/unfa1led channels, the nominal and maximum channel values, the failure
delay for each channel, and the constants associated with the scale factor,
step, ramp, and noise failure modes. The simulation portion of the software
was assigned the task of real-time failure simulation based on information
contained in any given failure scenario. This task was to include software
which would scale failure scenario parameters, initialize the analog hardware,
and begin execution of real-time failure simulation based on a cue from the
CIM unit.

Although not in the original conceptual design, a fifth task was added to
the SFS software during development. This task provides the user with the
ability to trip relays or to set D/A constants directly from the keyboard.
This task was included to facilitate debugging of the hardware and software.

Once the general conceptual design for the SFS software was established
(fig. 9), the next step was to choose a method of implementation which would
provide for a highly efficient user interface. A menu driven approach was
chosen. This type of approach is very efficient if the program execution can
be described as a type of decision tree with a limited number of branches at
any node. This was the case for the SFS as it was conceived and this was the
approach taken during implementation.

The SFS currently makes use of 15 menus and numerous other prompts to
accomplish its tasks. The user interface has proven to be very efficient and
user-friendly. The scenario store/retrieve capability, while slightly cumber­
some, provides the user with readable, as well as retrievable, scenario
descriptions. The editor is easy to use, and very efficient due to the exten­
sive use of function keys for input. The transient capability is able to pro­
vide the desired resolution during simulation, 2 to 9 msec. And the test
capability has already proven useful in debugging both hardware and software.

Since the sensor failure simulator hardware was being implemented with an
IBM-PC/XT as the user interface, a standared PC language was required to imple­
ment the software. The primary language chosen for implementation of the SFS
software was FORTRAN. In particular, Ryan-McFarland Corporation's IBM Pro­
fessional FORTRAN (version 1.00) compiler was used to produce the executable

6

code. This version "is an implementation of the full standard ANSI X3.9-1978
with extensions" (ref. 4). These extensions include utilities for obtaining
the date and time from the Disk Operating System (DOS) clock.

As a secondary language, IBM Macro Assembler was chosen (ref. 5). FORTRAN
does not have inherent in it the ability to interface with real-time hardware.
Therefore it was necessary to write some assembler code for driving the analog
circuitry and for interfacing with the elM unit. To obtain higher resolution
than was available from the DOS clock, it was also necessary to write an
assembly language routine that would read the real-time clock on the AST memory
expansion board. The 1 msec resolution available from the AST clock yields
smooth failure transients relative to the control update cycle.

The SFS source code, about 8000 lines, is currently divided into 47 DOS
text files which occupy approximately 182 Kbytes of hard disk storage. The
FORTRAN code is contained in 42 files; one file for the main program (SFS.FOR),
33 files for subprograms, and nine files for common blocks. Common blocks are
stored in separate files and included by the compiler during compilation. Four
of the remaining five files contain subprograms written in Macro Assembler
which provide hardware to hardware and software to hardware interfaces. The
last "source f1le" is the file that contains the text for on-line instructions.
A subprogram source file name is designated as the first eight letters of the
subprogram's name. The extension ".FOR" is used to denote a file containing
FORTRAN source code; the extension ".CMN" is used to denote a file containing
a common block, and the extension ".ASM" is used to denote a Macro Assembler
source code file. Table VII lists the source code file names, the name of the
subprogram contained in each file, and a brief description of each subprogram.
Table VIII lists the names of files containing common blocks, the name of.the
common contained in each file, and brief description of what is stored in the
common. Table IX shows the hierarchical structure of the SFS program. No
attempt has been made to show multiple calls. ,

The FORTRAN and the assembly language subprograms are compiled and assem­
bled respectively. The object code produced by compilation of the main program
is stored in SFS.OBJ. Object code for the subprograms is stored together in a
single object library, SFS.LIB. This is accomplished by using the library
utility supplied with the Professional FORTRAN, version 1.10 of the IBM Library
Manager. Executable code is produced by using version 2.3 of the IBM Personal
Computer Linker (ref. 4) and is stored in SFS.EXE. '

The object code for the SFS is contained in two files which require a
total of approximately 182 Kbytes of hard disk storage. The object module of
the man program, SFS.OBJ, requires about 5 Kbytes. The rest of the 182 Kbytes
is used for the object library, SFS.LIB.

The last two files which are part of the SFS code are the file containing
the executable image, SFS.EXE, and the DOS text file containing instructions
for using the SFS, INSTRUCT.TXT. The executable code requ~res 147 Kbytes of
storage and the instruction file about 57 Kbytes.

GUIDE TO OPERATION

This section is designed as a user guide for the SFS. In it the operation
of the SFS is described in detail. The first part of this discussion will deal

7

w1th d1rectory and f1le structures. The later part of the sect10n w1ll d1scuss
1n-depth each of the var10us program menus.

It should be p01nted out at th1s t1me that only one fa1lure scenar10 at a
t1me res1des 1n the PCls random access memory (RAM). Th1s fa1lure scenar10 1s
called the current fa1lure scenar10. In most cases, the program w1ll be work-
1ng on/w1th the current fa1lure scenar10. A default scenar10 1s def1ned dur1ng
the program 1n1t1a11zat10n and becomes the current fa1lure scenar10 unt1l
changed by the user or replaced by the retr1eval of a stored scenar10.

It should also be p01nted out at th1s t1me that some of the keys on the
keyboard are "mapped" dur1ng execut10n. FORTRAN does not prov1de an 1nterrupt
capab1l1ty for read1ng the keyboard. As a result some of the keyboard keys are
mapped or redef1ned to prov1de useful capab1l1t1es l1ke one-stroke 1nput and use
of funct10n keys. A more 1n-depth d1scuss10n on th1s top1c w1ll be presented
later 1n th1s paper. At th1s t1me the user 1s to be warned about term1nat1ng
program execut10n 1n an 1rregular manner. The effects of the key mapp1ng are
such that, 1f execut10n 1s term1nated 1rregularly, 1t may be necessary to
reboot the PC to return all keys to the1r or1g1nal key codes.

01rectory and F1le structure

Three f1les are used to run the SFS program. These f1les are SFS.BAT,
SFS.EXE, and INSTRUCT,TXT; SFS.BAT res1des 1n the d1rectory \UTILITY on the
PCls hard d1sk and 1s the batch f1le wh1ch 1n1t1ates program execut10n. The
second f1le ment10ned above, SFS.EXE, conta1ns the executable code and should
be located 1n the d1rectory \SFS. Also res1d1ng 1n the \SFS d1rectory on·the
hard d1sk, 1s the DOS text file, INSTRUCT.TXT, wh1ch conta1ns text for on-line
1nstruct10ns.

Although the SFS program and 1nstruct10ns are currently loaded from the
hard d1sk dr1ve, they may also be loaded from a floppy d1sk. In e1ther case
the directory and file structure should be the same as described above with
the exception that the SFS.BAT file may be stored in the floppyls root
directory.

\ Initiating Program Execution

Initiate program execution by typ1ng "SFS" in response to the DOS prompt
from anywhere but the \SFS directory. To get a printer listing of stored
scenar10 files (.SFS extension) before 1nit1at1ng program execut10n, type
"SFS /0" in response to the prompt.

Upon receiving the "SFS" command, DOS begins executing statements from the
SFS.BAT batch file (table XI). In lines 1 and 2, the ECHO and BREAK are turned
off. In line 3, the DOS search path is defined so that the search for an exe­
cutable file proceeds from the current directory to the \SFS directory. Line 4
of the batch file changes the DOS default directory to the \SCENARIO directory
where failure scenario files may be stored. Lines 5 and 6 check for the "/0"
parameter. If it has been included in the call to the batch file, a directory

8

11st1ng of all stored scenar10 f11es 1s routed to the pr1nter. The SFS exe­
cutable code 1s loaded and program execut10n beg1ns after the DOS command
processor rece1ves 11ne 7. For further exp1anat10n of these commands see the
DOS manual (ref. 7).

The SFS program beg1ns by pr1nt1ng a t1t1e screen. Th1s screen 1s d1s­
played wh11e program 1n1t1a11zat10n takes place. After 1n1t1a11zat10n 1s com­
pleted, th1s screen 1s replaced by the program's ma1n menu (f1g. 10).

The ma1n menu presents the user w1th a 11st of s1x opt10ns: (1) 1nstruc­
t10ns, (2) retr1eve stored fa11ure scenar10, (3) ed1t current fa11ure scenar10,
(4) run current fa11ure scenar10, (5) test SFS hardware/software, and (6) qu1t.
There are two ways to choose an act10n 1tem from th1s menu. One way 1s to
enter the number assoc1ated w1th a des1red act10n 1tem. Another way 1s to
choose the default act10n 1tem.

The default 1s d1sp1ayed 1n reverse v1deo. The default may be changed by
press1ng the up arrow or the down arrow on the keyboard. It may also be
changed by enter1ng the codes correspond1ng to these keys, "u<CR>" and "d<CR>"
respect1ve1y. The default may be selected by the carr1age return/enter key.

Instruct10ns

The f1rst act10n 1tem 1n the SFS ma1n menu prov1des the user w1th an
on-11ne program reference. When the user chooses th1s act10n 1tem, 1nstruct10n
text 1s d1sp1ayed. The f1rst page of th1s text 1s shown 1n f1gure 11. The
user may page up and down through the text by press1ng the PgUp and PgDn keys.
Enter1ng the code "b<CR>" of "f<CR>" w111 have the same effect. Other keys
wh1ch may be used wh11e 1n the 1nstruct10n fac111ty are the Home and End keys.
The Home key causes the 1nstruct10n fac111ty to return to the f1rst page of
text. The End key causes the fac111ty to proceed to the last page of text.
The ASCII codes for these keys are "Home<CR>" and "End<CR>" respect1ve1y. The
user may ex1t the 1nstruct10n fac111ty by press1ng a carr1age return/enter.

The text for the 1nstruct10n fac111ty 1s stored 1n the DOS text f11e
INSTRUCT.TXT. It 1s stored as a ser1es of pages 80 columns w1de by 22 11nes
long. Macros are prov1ded for 1nc1ud1ng any ASCII character or sequence of
characters 1n th1s text. These macros cause ASCII codes to be 1nserted 1n each
page of text as 1t 1s read from the test f11e. Macros are 11sted 1n table XII.
Note that wh11e the macros are mu1t1p1e characters, the number of characters
d1sp1ayed by the mon1tor w111 depend on the ASCII character or sequence of
characters wh1ch def1ne a g1ven macro. Also, note all DOS control sequences
must be followed by a space 1n the test. In part1cu1ar, th1s app11es to the
$f, $b, $r, and $n codes.

Stor1ng and Retr1ev1ng Fa11ure Scenar10s

The second act10n 1tem 1n the SFS ma1n menu prov1des the user w1th cap­
ab111t1es for stor1ng and retr1ev1ng fa11ure scenar10s from d1sk storage.
When the user chooses th1s act10n 1tem the stored scenar10 menu 1s d1sp1ayed
(f1g. 12).

9

The stored scenar10s menu presents the user w1th f1ve act10n 1tems: (1)
RETRIEVE, (2) DELETE, (3) REPLACE, (4) STORE, and (5) RETURN. These 1tems may
be chosen 1n a manner s1m11ar to the SFS ma1n menu. Note that the user may
w1sh to return to the stored scenar10 menu w1thout exerc1s1ng the spec1f1ed
act10n 1tem; th1s may be accomp11shed by press1ng the PgUp key or the PgDn key
any t1me after an act10n 1tem has been selected.

Act10n 1tem number one allows the user to retr1eve, from a spec1f1ed
stored scenar10 f11e, any scenar10 wh1ch has been stored 1n that f11e. A stored
scenar10 f11e 1s any DOS text f11e 1n wh1ch only scenar10s are stored or w111
be stored. One convent1on 1s to use a .SFS extens10n for denot1ng a fa11ure
scenar10 f11e. When act10n 1tem one 1s chosen, the user 1s prompted for a f11e
name. The default f11e name may be selected by press1ng carr1age return/enter
or a new f11e name entered by the user. F11e names may be any va11d DOS f11e
name. If the f11e ex1sts, the program w111 read the description of any sce­
nar10 stored 1n this f11e and present the user w1th a 11st of the descr1pt1on(s)
(f1g. 13). The user may then spec1fy, by sett1ng the default, which scenar10
the program should RETRIEVE. When the specif1ed scenar10 has been retr1eved,
the program displays the new scenar10 descr1pt1on under the banner and returns
to the stored scenar10 menu.

Act10n 1tem number two allows the user to delete, from a spec1f1ed stored
scenar10 f11e, any scenar10 wh1ch has been stored 1n that f11e. When act10n
item two 1s chosen, the user 1s prompted for a f11e name. As with action 1tem
one, the program w111 check for the files ex1stence. If the f11e exists, the
program w111 read the descr1pt1on of any scenar10 stored in th1s f11e and
present the user w1th a 11st of these descr1pt1ons. The user may then spec1fy,
by setting the default, wh1ch scenar10 the program should DELETE. When the
spec1f1ed scenar10 has been deleted, the program returns to the stored scenar10
menu.

Act10n 1tem number three allows the user to replace a stored scenar10 w1th
the current fa11ure scenar10. When th1s act10n 1tem 1s chosen, the user 1s
prompted for a f11e name. As with action items one and two, the program w111
check for the f11es ex1stence. If the f11e ex1sts, the program w111 read the
descr1pt1on of any scenar10 stored 1n th1s f11e and present the user w1th a 11st
of these descr1pt1ons. The user may then spec1fy, by sett1ng the default, which
scenar10 should be REPLACED by the current fa11ure scenar10. When the spec1f1ed
scenar10 has been replaced, the program returns to the stored scenar10 menu.

Act10n 1tem number four allows the user to store the current failure
scenar10 1n a spec1f1ed file. When th1s act10n 1tem 1s chosen, the user 1s
prompted for a file name. The program w111 check for the f11es ex1stence. If
the f11e ex1sts and the spec1f1ed f11e has the capac1ty, the current fa11ure
scenario w1l1 be appended to the end of the f1le. There 1s a l1m1t of ten (10)
fa1lure scenar10s per scenario f11e. If the f11e specif1ed by the user does
not ex1st, the program not1f1es the user and asks 1f 1t should create a new
f1le. When the scenar10 1s stored, the user 1s returned to the stored scenar10
menu.

The user may return to the SFS ma1n menu by select1ng act10n 1tem five.

10

Creat1ng/Ed1t1ng a Fa11ure Scenar10

The th1rd act10n 1tem 1n the SFS ma1n menu 1s EDIT CURRENT FAILURE SCE­
NARIO. When the user selects this action item, the program enters the FAILURE
SCENARIO EDITOR.

The ed1tor begins by displaying the description of the current failure
scenario (f1g. 14). At this t1me, the user may choose to accept the current
descript10n or replace it with a new description. Retention of the default
descript10n may be accomplished by pressing carriage return/enter. A new
description may be def1ned by simply entering it from the keyboard.

After the user enters a descript1on, the editor centers it below the ban­
ner and displays the Failed Channels menu (fig. 15). This menu allows the
user to select which channels will be failed during simulation. Failed chan­
nels are d1sp1ayed in bold type; unfai1ed channels are displayed in normal
type. Each channel may be toggled between failed and unfai1ed by pressing the
number key corresponding to the given channel. A carr1age return not1f1es the
program that the user is finished with this menu.

The next two menus in the failure scenario ed1tor are necessary to estab­
lish the relationship between the SFS output voltages and the engineering units
they represent. They allow the user to define the parameters of a failure sce­
nar10 in engineering units. The first menu is for specifying nominal channel
values (fig. 16). Each channel's nominal value should be set to the value, in
engineering units, represented by the incoming sensor s1gna1 at run time. The
second menu is for specifying maximum channel values (fig. 17). Each channel's
maximum value should be set to the value, in eng1neer1ng un1ts, which
represents full scale.

The constants assoc1ated w1th these menus may be changed 1n the following
manner. F1rst, set the default (reverse v1deo) over the channel which will be
modif1ed. Use the up and/or down arrow key to set the default. Next, enter
the new value of the constant followed by a carr1age return. Press1ng carr1age
return/enter by 1tse1f, causes the ed1tor to proceed to the next menu. Note
that any channels def1ned as fa11ed 1n the Channel Fa11ure menu w111 be d1s­
played in bold text (high intensity) in these menus.

The failure delay menu (fig. 18) is the next menu displayed by the editor.
It 1s functionally the same as the menus used to set nominal and maximum chan­
nel values. This menu allows the user to specify, for each channel, some dead
time at the beginn1ng of the trans1ent. Actual fa11ure s1mulat1on on each
channel w111 beg1n 1mmed1ately follow1ng the delay spec1f1ed for that channel.
Th1s menu provides the user w1th the capab111ty to s1mulate mu1t1p1e offset
fa11ures.

After ex1t1ng the fa1lure delay menu the ed1tor w1l1 beg1n to d1sp1ay a
menu of failure modes and constants (e.g., scale factor, bias, ramp, and noise)
for each fa11ed channel (f1g. 19). Beg1nn1ng w1th channel one and cont1nuing
sequent1al1y through channel f1ve, these menus allow the user to spec1fy the
fa11ure modes and assoc1ated constants which define how a part1cu1ar channel's
failure will be s1mulated.

11

The menu for each channel failed will display four failure modes and four
associated constants. Note that any combination of act1ve/1nact1ve modes are
possible and that the active failure modes are displayed in bold type. A fail­
ure mode may be activated by simply depressing the associated number on the
keyboard followed by a carriage return/enter. To modify the constant of a
given failure mode, the user should enter the number corresponding to the fail­
ure mode followed by a delimiter (space or comma) followed by the new value of
the constant. Pressing carriage return/enter completes the sequence and the
constant's old value is replaced by the new.

In these menus the scale factor mode is always active and defaults to
unity; the other modes may either be active or inactive. The active scale
factor mode causes a channel's incoming signal to be multiplied by the scale
factor constant. The value of scale factor constant may range between ±2. If
the bias mode is active, it has the effect of adding a step to the incoming
sensor signal. The height of the step is the value of the bias constant which
is only constrained by the specified maximum channel value. If the ramp fa1l­
ure mode is active, a bias is added to the incoming sensor signal which varies
linearly in time, the slope being the value of the ramp constant. If the noise
mode is active, the incoming signal from the external noise generator is multi­
plied by the noise gain constant and added to the incoming sensor signal. The
noise gain constant is limited to the range ±l. The noise failure is allowed
to be active on only one channel in the current failure scenario.

A single carriage return/enter will cause the editor to check for errors
in failure definition. First, the editor checks to see if the maximum channel
value is exceeded by the scale factor, step bias, or noise failures. If the
maximum value is exceeded, the editor presents the user with current maximum
and a suggested maximum. The user is asked if it is acceptable to replace the
current maximum with the suggested maximum (fig. 20). If the user chooses not
to accept the computed maximum, the editor returns to the failure mode menu.
This error checking takes place because the transient portion of the program
limits the output signal to the maximum channel value in both the positive and
negative directions. .

After conflicts with the maximum channel value have been satisfactorily
resolved, the editor does some checking on the ramp failure mode. If the ramp
failure mode is active, the program will display the approximate time at which
the ramp will reach the channel maximum (fig. 21). The user is then prompted
to accept the status quo. If the peak time displayed is unacceptable, entering
an "n<CR>" will cause the editor to return to the failure mode menu. If the
peak time displayed is acceptable, the editor moves on to the menu for the
next failed channel.

When menus for all failed channels have been completed, the editor per­
forms one final error check. It was stated previously that noise may be
defined on only one channel. The editor will check this condition. If noise
has been defined on more than one channel, those channels are displayed in menu
form (fig. 22). The user is then asked to choose a single channel from the
list. During run time, noise will only be added to the specified channel.

When the editor determines that the scenario is essentially without error,
it queries the user one last time. This query allows the user to store'the
failure scenario just defined. If the editor receives a positive reply, the
user will be prompted for a file name. The program will check for the files

12

~x1stence. If the file exists and the specified file has the capacity, the
current failure scenario will be appended to the end of the file. Remember.
there is a limit of ten (10) failure scenarios per scenario file. If the file
specified by the user does not exist. the program notifies the user and asks if
it should create a new file. When the scenario is stored. the user is returned
to the SFS main menu.

At this time more discussion should be included about mapping keys to
specified codes. Most of the key mapping mentioned earlier was implemented
specifically for the editor. Some keys are mapped to SFS identifiable
sequences of ASCII codes before entering a menu and remapped to the original
single ASCII codes when exiting the menu. At other times during program execu­
tion, a carriage return is added to a key's ASCII code. This provides a cap­
ability for one stroke input (e.g., pressing key "1" becomes the same as
pressing key "1" followed by a carriage return). Key mapping is accomplished
by the control codes listed in reference 6. At any time during execution an
SFS identifiable ASCII sequence may be entered as an alternative to pressing
the key to which that sequence is mapped. The ten function keys, as well as
the Home, End, PgUp, and PgOn keys, are mapped to control codes recognized by
the editor. These codes allow the user the freedom of moving between noncon­
sect1ve menus within the editor. This feature was added to enhance productiv­
ity in the research environment. Table X contains a list of the function and
keypad keys recognized by the editor, the codes which are mapped to these keys,
and a short description of the keys functions. Figure 23 shows the function
key template.

Real-Time Sensor Failure Simulation

The fourth action item in the SFS main menu is the heart of the SFS. This
is where the actual real-time sensor failure simulation takes place. When the
user chooses this action item the program requests permission to initialize the
D/A hardware (fig. 24). There are several places in this part of the program
where the user may abort the simulation and return to the main menu; this is
the first. If the user enters a character other than "Y" or "<CR>" the program
returns to the main menu.

If permission is granted by the user, the D/A hardware is initialize as
follows. First. the multiplying DAC for the noise, MDACO, is set to 0.0.
Second, the scale factor MDACs for the five sensor signals are set to 1.0.
Third, the bias DACs for the five sensor signals are set to 0.0. Forth, if the
noise failure is active for a given channel, the noise relay for that channel
is closed and all other noise relays are opened. Finally, if any channel has
been defined as failed, the failure relay for that channel is closed. At this
point, the signal flow path of all failed channels is redirected through the
failure circuitry. The hardware is ready to begin the simulation of sensor
failure(s).

After completing hardware initialization, the program does some software
initialization. The failure gains specified for each channel are scaled and
stored as run-time gains for output to the D/A hardware. Bias and ramp con­
stants for channels 1 to 4 are scaled as follows:

failure gain
run-time gain = maximum channel value

13

for channel five the maximum value must be converted, before scaling, from
fahrenheit to Rankin. The formula for scaling the bias and ramp constants
then beco~es:

failure gain
run-time gain = (maximum channel value + 459.67)

Constants for the scale factor and noise failures are not normalized.

When initialization of the failure hardware is complete and the run-time
gains have been computed, the program queries the user once again (fig. 25).
Here the user is asked to specify how long the failure transient should run.
If a carriage return is depressed, the program uses the default displayed under
the query. If a run time other than the default is desired, that number may
be entered from the keyboard. The software currently limits the run time to
between 1 and 60 sec. Any integer or real number within these constraints may
be specified.

After obtaining the length of the failure transient from the user, the SfS
is ready to run the current sensor failure scenario. The program .now presents
the user with three choices (fig. 26): (1) Begin Scenario, (2) Begin Scenario
on signal from CIM, and (3) Return to Main Menu. The desired action item is
specified by a two character sequence, the option number followed by a carriage
return/enter. If the user chooses to return to the main menu, the failure
relays are opened so that the sensors signals ·are restored to their individual
through flow signal paths.

When the user chooses action item number one, three things happen: the
menu is erased; the message "** RUNNING **" appears with flashing asterisks
(fig. 27); the real-time failure simulation begins. There is a lag of about
100 msec between the time when the user enters the option number and the time
that failure simulation actually begins. Most of this lag is cause by output
to the monitor.

When the user chooses action item number two a different sequence of
events takes place. first, the current menu is erased. Then, the program
notifies the user that it is waiting for a signal from the CIM unit to begin
the simulation. When transient data taking is 1nitated by the CIM unit, it
sends a signal to the SfS. The SfS takes this signal as its cue to begin the
simulation. An asterisk "*" is displayed under the wait message just before
and during the real-time simulation (fig. 28). The dead time between the CIM
signal and the beginning of the transient is approximately 40 msec.

Simulation begins by 1n1tal1zing the timer. After the timer is initial­
ized, the program enters the simulation loop. The simulation loop begins by
calling the timer. The timer returns the time, in seconds, that the simulation
has been running (run time). from this time and the time read at the beginning
of the previous loop a delta (dT) is computed. At this point, the program
begins to modify the constants of the D/A hardware.

If a channel is failed, and if the run time has just met or exceeded the
failure delay, the MDAC for the noise, the MDAC for the scale factor, and the
DAC for the bias are all set to their failed values. Next, if the channel is
failed and if a ramp failure has been specified, a new value is computed for

14

the constant which is output to the bias DAC. The new value for the constant
1s computed as follows:

run-time bias = run-time bias + (slope * dT)

The variable slope on the right-hand side of the equation is the ramp constant
scaled by the maximum channel value. The value for the bias DAC constant is
then limited to values between ±l. After computing the new value for the bias
DAC, it is output to the DAC. This series of steps is performed on channels 1
through 5 sequentially.

At the end of the simulation loop, the program saves the current run time
and uses it to compute the next update interval (dT). If the run time is less
than the time specified as the length of transient, execution continues at the
beginning of the loop. When the run time meets or exceeds the length of the
transient, the program exists the real-time loop and displays some statistical
information about the run (fig. 29).

Note that this method of implementation allows the simulation loop to run
at the maximum speed of the pc. The dT will change with the number of opera­
tions performed inside the loop. The worst case scenario occurs when all five
channels fail at T = 0.0 and all five channels exhibit scale factor, bias, and
ramp failures. For this worst case scenario the statistics were found to be:
maximum dT is 0.009 sec, maximum dT occurs at 0.001 sec, and average dT is
0.005 sec. These figures are provided as a measure of the resolution of the
simulation.

The final screen displayed by this part of the program is a menu provided
for manually restoring channels to an unfa11ed state (fig. 30). It is dis­
played only if a failure has been simulated on one of the channels. Failed
channels are displayed in bold (high intensity) type. All channels MUST be
restored to an unfa1led state. A channel may be restored to its unfa1led state
by entering the channel number from the keyboard,. This trips the channel's
relay which causes the sensor signal to be switched from the failed signal path
to the through flow signal path. When all channels have been restored to an
unfa1led state, the program returns to the main menu.

Testing the SFS Hardware

The fifth action item in the SFS main menu provides the user with the cap­
ability to set the D/A hardware constants and trip noise and failure relays
manually. Specifying this action item causes the program to erase the main
menu, to initialize the D/A hardware, and to present the user with a menu
similar to figure 31. This portion of the SFS was useful for debugging
problems with both hardware and software.

Before displaying the test menu, constants for the D/A hardware are
obtained from the current failure scenario. These scaled values are then out­
put to the DACs and MDACs. The position of the noise relays is also set
according to the current failure scenario. However, the failure relays are
ALWAYS initialized to an unfa1led state.

15

At th1s po1nt the menu 1s d1splayed. If a DAC or an MDAC 1s loaded w1th
a nonzero constant, the 1tem w1ll be d1splayed 1n bold type (h1gh tens1ty).
When relays wh1ch are pos1t1oned to a fa1led state are also d1splayed as bold.

Constants may be checked or changed by enter1ng a dev1ce number followed
by a carr1age return/enter. Follow1ng this sequence, the current value of the
constant for the spec1f1ed dev1ce 1s displayed 1n the lower left corner of the
mon1tor. Next a prompt for the dev1ce 1 s constant and the l1m1ts of that con­
stant are d1splayed. If only a carr1age return 1s entered, the value of the
constant for the dev1ce 1n quest10n rema1ns unchanged. If a new value 1s
entered by the user, th1s value 1s output to the proper device and d1splayed
1n the lower left corner of the mon1tor. Values wh1ch are out of range cause
an error message to be d1splayed.

The user may ex1t the test menu and return to the SFS ma1n menu by enter-
1ng device number 99. Before return1ng to the ma1n menu, the program returns
all relays to an unfa1led state.

TERMINATING EXECUTION OF THE SFS

The last act10n 1tem 1n the SFS ma1n menu 1s for term1nating program exe­
cut1on. When the user chooses act10n 1tem number s1x, the ma1n menu 1s erased
and the user 1s presented with the prompt "Ex1t1ng SFS: Are you Sure??" An
aff1rmat1ve reply from the user causes program execut10n to be suspended. A
negative reply returns execut10n to the ma1n menu. It 1s STRONGLY SUGGESTED
that program execut10n be term1nated 1n th1s fashion. Term1nat1ng the program
1n any other manner may leave fa1lure hardware 1n an undes1rable state.
Improper mapp1ng of keyboard keys 1s also l1kely to occur 1f the program execu­
t10n is term1nated 1n an other than proper manner.

SUMMARY OF RESULTS

A real-t1me Sensor Fa1lure S1mulator was des1gned and assembled for the
ADIA program. A personal computer-based des1gn was chosen as the most favor­
able approach. In th1s des1gn spec1al analog hardware, dr1ven by an IBM-PC/XT,
mod1f1es f1ve 1ncom1ng sensor s1gnals to produce s1mulated sensor fa1lures.

A user def1ned scenar10 conta1ns the 1nformat1on wh1ch 1s used by the SFS
to s1mulate sensor fa1lures. The model used for s1mulat1ng sensor failures
has three components: a scale factor component, a b1as component (constant +
var1able), and a no1se component. Capab1l1t1es ex1st for ed1t1ng~ sav1ng, and
retr1eving the fa1lure scenarios.

The Sensor Fa1lure S1mulator has been tested closed-loop w1th the CIM,
ADIA control, and a real-t1me F100 hybr1d simulation. From a product1v1ty
v1ewpo1nt, the menu dr1ven user 1nterface has proven to be eff1c1ent and easy
to use. From a real-t1me v1ewpo1nt, the software control11ng the simulat10n
loop executes than 100 cycles/sec.

16

REfERENCES

1. Delaat, J.C.; and Merrill, W.C.: A Real-Time Implementation of an
Advanced Sensor failure Detection, Isolation and Accommodation Algorithm.
AIAA Paper 84-0569, Jan. 1984.

2. Merrill, W.C.; and Delaat, J.C.: A Real-Time Simulation Evaluation of an
Advanced Detection, Isolation and Accommodation Algorithm for Sensor fail­
ures in Turbine Engines. NASA TM-87289, 1986.

3. Delaat, J.C.; and Soeder, J.f.: Design ofa Microprocessor-Based Control,
Interface and Monitoring (CIM) Unit for Turbine Engine Controls Research.
NASA TM-83433, 1983.

4. IBM Personal computer Professional FORTRAN, Installation and Use. Ryan­
McFarland Corp., IBM Corp., 1984.

5. Macro Assembler Version 2.00. IBM Corp., 1984.

6. Disk Operating System, Technical Reference. Microsoft Corp., IBM Corp.,
1983.

7. Disk Operating System. Microsoft Corp., IBM Corp., 1983.

17

APPENDIX A

TABLES

TABLE I. - AJ1 PIN CONNECTIONS -
PROTOBOARD DIFFERENTIAL SIGNALS

Pin To Function

1 DJl-22 CIM READY
2 El1-15 Channel No. 2 in (+)
3 El1-16 Channel No.2 in (-)
4 EIl-18 Channel No.4 in (+)
5 El1-19 Channel No.4 in (-)
6 EOl-25 START from CIM (+)
7 EOl-24 START from CIM (-)
8 17-NOA Signal No. lout (+)
9 17-NOB Signal No.1 out (-)

10 19-NOA Signal No.3 out (+)
11 19-NOB Singal No.3 out (-)
12 21-NOA Signal No. 5 out (+)
13 21-NOB Signal No.5 out (-)
14 Ell-1 Channel No.1 in (+)
15 El1-2 Channel No.1 in (-)
16 El1-4 Channel No.3 in (+)
17 El1-5 Channel No.3 in (-)
18 El1-7 Channel No.5 in (+)
19 El1-8 Channel No.5 in (-)
20 NC
21 NC
22 18-NOA Signal No.2 out (+)
23 18-NOB Signal No. 2 out (-)
24 20-NOA Signal No.4 out (+)
25 20-NOB Signal No. 4 out (-)

Pin

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

TABLE II. - AJ2 PIN CONNECTIONS -
PROTOBOARD SINGLE ENDED SIGNALS

To Function

l-CA NOISE No. 1
3-CA NOISE No. 2
5-CA NOISE No. 5
NC
DJI-16 BIAS No. 1
DJI-12 BIAS No. 3
DJ1-1 Bias No.5
MJ2-23 SCALE No. 2 to adder
MJ3-23 SCALE No. 4 to adder
NC
MJI-16 SCALE No.1 from instr. amp
MJ2-16 SCALE No.3 from instr. amp
MJ3-16 SCALE No.5 from instr. amp
2-CA NOISE No. 2
4-CA NOISE No. 4
BNC (-) NOISE GROUND
DJI-14 BIAS No. 2
DJI-2 BIAS No. 4
NC
MJI-17 SCALE No. 1 to adder
MJ2-17 SCALE No. 3 to adder
MJ3-17 SCALE No. 5 to adder
NC
MJ2-22 SCALE No.2 from instr. amp
MJ3-22 SCALE No.4 from instr. amp

TABLE III. - MJ1, MJ2, and MJ3 PIN CONNECTIONS -
MDAC (DAC-02) SCALE FACTOR SIGNALS

Connector MJ1

Pin To Function

1-15 NC
16 AJ2-11 SCALE No.1 input to MDAC
17 AJ2-20 SCALE No. 1 output from MDAC

18-21 NC
22 BNC (+) NOISE Signal in
23 1-NOA, 2-NOA NOISE Signal out

3-NOA, 4-NOA, 5-NOA
24-25 NC

Connector MJ2

Pin To Function

1-15 NC
16 AJ2-12 SCALE No. 3 input to MDAC
17 AJ2-21 SCALE No. 3 output from MDAC

18-21 NC
22 AJ2-24 SCALE No. 2 input to MDAC
23 AJ2-8 SCALE No. 2 output from MDAC

24-25 NC

Connector MJ3

Pin To Function

1-15 NC
16 AJ2-13 SCALE No. 5 input to MDAC
17 AJ2-22 SCALE No. 5 output from MDAC

18-21 NC
22 AJ2-25 SCALE No. 4 input to MDAC
23 AJ2-9 SCALE No.4 output from MDAC

24-25 NC

Pin

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
29
21
22
23
24
25

TABLE IV. - EIl PIN CONNECTIONS -
ENGINE INPUT SIGNALS

To Function

17-NCA, AJl-14 Channel No. 1 in (+)
17-NCB, AJl-15 Channel No.1 in (-)
EOl-3 Channel No.2 shield
19-NCA, AJl-16 Channel No.3 in (+)
19-NCB, AJl-17 Channel No.3 in (-)
EOl-6 Channel No. 4 shield
21-NCA, AJl-18 Channel No. 5 in (+)
21-NCB, AJl-19 Channel No.5 in (-)
NC
NC
NC
NC
NC
EOl-14 Channel No. 1 shield
18-NCA, AJl-2 Channel No. 2 in (+)
18-NCB, AJl-3 Channel No. 2 in (-)
EOl-17 Channel No. 3 shield
20-NCA, AJl-4 Channel No. 4 in (+)
20-NCB, AJl-5 Channel No.4 in (-)
EOl-20 Channel No. 5 shield
NC
NC
NC
NC
NC

TABLE V. - OJ1 PIN CONNECTIONS -
OAC (OOA-06) OUTPUT SIGNALS

Pin To Function

1 AJ2-7 BIAS No. 5
2 AJ2-18 BIAS No. 4
3 E01-24 ACK to CIM
4 ERB-4 To ERB relay board
5 ERB-5
6 ERB-6
7 ERB-7
8 ERB-8
9 ERB-9

10 ERB-10
11 ERB-ll To ERB relay board
12 AJ2-6 Bias No.3
13 NC
14 AJ2-17 Bias No. 2
15 NC
16 AJ2-5 Bias No. 1
17 NC
18 NC
19 . NC
20 NC
21 NC
22 AJl-1 CIM Ready
23 ERB-23 To ERB relay board
24 ERB-24
25 ERB-25
26 ERB-26
27 ERB-27
28 ERB-28
29 ERB-29
30 ERB-30
31 ERB-31
32 ERB-32
33 ERB-33
34 ERB-34
35 ERB-35
36 ERB-36
37 ERB-37 To ERB relay board

TABLE VI. - E01 PIN COONECTIONS -
SIMULATOR OUTPUT SIGNALS

Pin To Function

1 17-CA Channel No. lout (+)
2 17-CB Channel No.1 out (-)
3 Ell-3 Channel No. 2 shield
4 19-CA Channel No.3 out ~+)
5 19-CB Channel No.3 out -)
6 Ell-6 Channel No.4 shield
7 21-CA Channel No. 5 out (+)
8 21-CB Channel No.5 out (-)
9 NC

10 NC
11 NC
12 NC
13 NC
14 Ell-14 Channel No. 1 shield
15 18-CA Channel No. 2 out (+)
16 18-CB Channel No. 2 out (-)
17 Ell-17 Cahnnel No. 3 shield
18 20-CA Channel No.4 out (+)
19 20-CB Chaneel No.,4 out (-)
20 EIl-20 Channel No.5 shield
21 NC
22 NC
23 NC
24 AJl-7 START from CIM (-)
25 AJl-6 START from CIM (+)

BNC connector (noise input)

(+) - MJl-22
(-) - 1-NCA, 2-NCA, 3-NCA

4-NCA, 5-NCA, AJ2-16
MJI-2

TABLE VII. - PROGRAM DESCRIPTIONS FOR THE SENSOR FAILURE SIMULATOR PROGRAM

Program name

Cim

Edit

Edit Description

Edit Failures

Edit Gains

Edit Save

Edit Values

End of Fil

Erase Screen

Get Clock

GETDAT

GETTIM

Init 8255

DOS file name

CIM.ASM

EDIT. FOR

EDITDESC.FOR

EDITFAIL.FOR

EDITGAIN.FOR

EDITSAVE. FOR

EDITVALU.FOR

ENDOFFIL.FOR

ERASESCR.FOR

GETCLOCK.ASM

Description

FORTRAN callable assembly routine used by SFS to
begin failure simulation on cue from CIM unit.

FORTRAN subroutine which controls flow of the failure
scenario editor.

FORTRAN subroutine which allows user to change
description of current failure scenario.

FORTRAN subroutine which allows user to define which
channels of the current scenario will be failed.

FORTRAN subroutine which allows user to define type
of failure and associated constants for each failed
channel.

FORTRAN subroutine which allows the user to save the
current failure scenario in a DOS text file before
existing failure scenario editor.

FORTRAN subroutine which allows user to modify
nominal and maximum channel values as well as
failure delays for the current scenario.

FORTRAN logical function which sets the pointer to
the end of the currently open scenario file. True
is returned if no errors, otherwise false is
returned.

FORTRAN subroutine which writes the DOS control code
for clearing the CRT text screen.

FORTRAN callable assembly routine which reads the
real-time clock on the AST board. Returns as
integers minutes, seconds, tenths, hundredths, and
thousandths.

Non-standard FORTRAN callable subroutine whcih
returns the date from the DOS clock.

Non-standard FORTRAN callable subroutine which
returns the time from the DOS clock.

INIT82255.ASM FORTRAN callable assembly routine which initializes
the 8255 chip on the Metrabyte ODA-06 OAC/parallel
output board. (Ports A and B initialized as outputs,
port C initialized as input.).

Program name

Init HDWR

Initialize

Instructions

Menu 1

Menu 2

Noise CHK

NonBlank

Open File

TABLE VII. Continued

DOS file name Description

INITHDWR.FOR FORTRAN subroutine which prepares failure hardware
for transient simulation. Sets scale factor to 1.0
and bias to 0.0 then trips relays of failed channels.

INITIAL.FOR FORTRAN subroutine which initailizes values for all
common blocks. Also calls subroutines which
initialize the anlaoq hardware (Init 8255 and Init
HDWR).

INSTRUCT.FOR FORTRAN subroutine which calls READ INSTRUCTIONS to
read DOS text file containinq instructions
(\SFS\INSTRUCT.TXT) then displays the file contents
on the monitor in an organized fashion.

MENU1.FOR FORTRAN subroutine which displays SFS main menu,
prompts user and returns a correct response to the
main program.

MENU2.FOR FORTRAN subroutine which displays menu controlling
manipulation of stored scenarios, prompts user and
returns a correct response to STORE.

NOISECHK.FOR FORTRAN subroutine which checks failure scenario to
ensure that noise is defined for one channel only.
If not prompts user for correction.

NONBLANK.FOR FORTRAN integer function whose value is the position
of the last nonblank character in the character
variable which is its parameter.

OPENFILE.FOR FORTRAN subroutine used to open failure scenario
files for reading and writing.

Read Instructions READINST.FOR FORTRAN subroutine which reads DOS text file
containing insturctions for using the SFS.

Read Scenario READSCE.FOR

Read Timer ZEROTIME.FOR

Run RUN.FOR

FORTRAN subroutine which reads a scenario (specified
by number) from the currently open scenario file.

FORTRAN subroutine which calls GET CLOCK to read the
real-time clock on the AST board and returns as the
value of its parameter the elaspsed time (in
seconds) since the last call to ZERO TIMER.
Resolution: 0.001 sec.

FORTRAN subroutine which controls flow of proqram's
real-time failure simulation.

Program name

Run Reset

Run Setup

Sensor Failure

SFS Out

Store

Store Delete

Store List

Store Replace

Store Retrieve

Store Save

Test

Wait

Write Scenario

Zero Timer

TABLE VII. Concluded

DOS file name Description

RUNRESET.FOR FORTRAN subroutine which forces user to manually
reset relays for all failed channels to an unfailed
state at the end of failure simulation.

RUNSETUP.FOR FORTRAN subroutine which prompts user to initialized
failure hardware. If positive response, calls INIT
HDWR.

SFS.FOR

SFSOUT.ASM

STORE.FOR

STOREDEL.FOR

STORELIS.FOR

STOREREP.FOR

STORERET.FOR

STORESAV.FOR

TEST.FOR

WAIT .FOR

WR ITESCE • FOR

ZEROTIME. FOR

FORTRAN MAIN PROGRAM. Controls overall program
execution.

FORTRAN callable assembly routine used for ouput to
D/A converters, multiplying D/A converters, and
relays located on the Metrabyte DDA-06, DAC-02, and
ERB-24 boards respectively.

FORTRAN subroutine which controls flow for portion
of program which stores, retrieves, deletes,
and replaces scenarios in DOS text files.

FORTRAN subroutine which provides capability for user
to delete a previously stored scenario from a file.

FORTRAN subroutine which reads a specified scenario
file, presents user with a list of scenarios stored
therein, prompts user for choise and returns number
of the stored scenario to the calling subroutine.

FORTRAN subroutine which provides capability to
replace any given scenario stored in a file with the
current failure scenario.

FORTRAN subroutine which provides capability for user
to retrieve from a file a previously stored scenario.

FORTRAN subroutine which provides a capability for
the user to save the current failure scenario in a
DOS text file.

FORTRAN subroutine which allows user to manipulate
the failure hardware directly from the PC's keyboard.

FORTRAN subroutine which uses GETTIM to suspend
program execution for a specified number of seconds.

FORTRAN subroutine which writes the current failure
scenario to the currently open scenario file.

FORTRAN subroutine which calls GET CLOCK to read the
real-time clock on AST board then stores the time of
day returned by GET CLOCK as the start time of the
trans i ent.

TABLE VIII. - COMMON BLOCK DESCRIPTIONS FOR THE SENSOR FAILURE SIMULATOR PROGRAM

Name of
common

DOS file name

(Blank) BLANK.CMN

SFS 00 SFSOO.CMN

SFS 01 SFS01.CMN

SFS 02 SFS02.CMN

Menu 00 MENUOO.CMN

Menu 11 MENU11.CMN

Menu 12 MENU12.CMN

Menu 21 MENU21.CMN

Hardware HARDWARE.CMN

Type Description

character Contains DOS control codes and special ASCII graphics sequences.

character Contains name of default scenario file, file header, current
scenario description and units for each channel.

integer Contains constants for number of channels, number of failures
per channel and maximum number of scenarios per file.

mixed Contains logical and numerical data for the current failure
scenario.

character Contains title and options used by subroutine menu 1.

character Contains description of channel signals for editor.

character Contains description of failure modes for editor.

character Contains description of options for the stored scenario menu.

integer Contains device designations for the various pieces of D/A
hardware.

TABLE IX. - HIERARCHICAL STRUCTURE OF THE SENSOR FAILURE SIMULATOR PROGRAN

Main Program Level 1 Level 2 Level 3 Level 4 Level 5

Sensor
Failure
Simulator Initialize Init 8255

Init HDWR SFS Out
Erase Screen
Menu 1 Erase Screen

NonBlank
Instructions Read Instructions

Erase Screen
Store Erase Screen

Menu 2
Store Retrieve Open File NonBlank

Store List
Read Scenario NonBlank

Wait GETTIM
Store delete Open File NonBlank

Store List
NonBlank

Store Replace Open File NonBlank
Store List
Write Scenario GETDAT

GETTIM
NonBlank

NonBlank
Store Save Open File NonBlank

End of File
Write Scenario GETDAT

GETTIM
NonBlank

NonBlank
Edit Erase Screen

Edit Description NonBlank
Edit Failure

TABLE IX. - HIERARCHICAL STRUCTURE OF THE SENSOR FAILURE SIMULATOR PROGRAN
(concluded)

Ma in Program Level 1 Level 2 Level 3 Level 4 Leve 1 5

Edit Values
Edit Gains
Noise Check
Edit Save Open File NonBlank

End of File
Write Scenario GETDAT

GETTIM
NonBlank

NonBlank
Wait GETTIM

Run Erase Screen
Run Setup lnit HDWR SFS Out
CIM
Zero Timer Get Clock
Read Timer Get Clock
(Zero Timer)
SFS Out
Run Reset SFS Out

Test Erase Screen
SFS Out

TABLE X. - EDITOR FUNCTION KEYS AND CODES

Key Code Function

F1 ml<CR>a display scenario description menu
F2 m6<CR> display failed channels menu
F3 m2<CR> display nominal values menu
F4 m7<CR> display maximum values menu'
F5 m3<CR> display failure delay menu
F6 m8<CR> display channell failure modes
F7 m4<CR> display channel 2 failure modes
F8 m9<CR> display channel 3 failure modes
F9 m5<CR> display channel 4 failure modes
flO mO<CR> display channel 5 failure modes
Home mO<CR> display scenario description menu
PgUp b<CR> display previous menu
PgDn f<CR> display next menu
End mx<CR> save scenario and exit editor
t u<CR> move up one menu item
! d<CR> move down one menu item

a<CR> denotes a carriage return (ASCII decimal code 13)

TABLE XI. - DOS BATCH FILE SFS BAT
Line no. DOS Command line

1 echo off
2 break off
3 path D:\sfs;D:\DOS;D:\uti1ity
4 ed\seenario
5 if 1%11= =1 /d l

; dir * .see > LPTl
6 if 1%11= =1/0 1; dir *.see > LPn
7 SFS
8 ed\
9 break on

TABLE XII. - SPECIAL CODES FOR INSTRUCTION TEXT FILE
Code Translation

~S dollar sign (S)
$e escape character, ASCII decimal code 27
~f control sequence which causes subsequent test

to flash (blink)
$b control sequence which causes subsequent text

to appear bold (high inte~sity)
$r control sequence which causes subsequent text

to appear in reverse video (dark on light)
$n control sequence which causes subsequent text

to appear in normal video (non-flashing,
normal intensity, light on dark)

$c### ASCII character specified by ###, where
is a three digit integer between 000 and 255

ENGINE
SENSOR (5)
SIGNALS

I:l- -
Lr

ENGINE
SENSOR
SIGNAL

GAIN

SCALE

RAMP + STEP RANDOM NOISE

BIAS NOISE

FIGURE 1. - METHOD OF FAILURE MODELING.

FAILURE
SCENARIO

CONTROLLER

DATA FLOW

•
-----l'

ANALOG
CIRCUITRY OUTPUT

I'

ENGINE E0 SENSOR INPUT
SIGNALS

FIGURE 2. - GENERAL CONCEPTUAL DESIGN.

FAILED
SENSOR
SIGNAL

MODIFIED
SENSOR
SIGNALS

~~D~~~~--r---------------------------~NC
SIGNALS

'" '" <
:J:
U

Z
o

'" z
<
0..
><

W

U
Cl..

DACS

DDA-06

8255

ERB-24B
SWITCH
MATRIX

FIGURE 3. - BLOCK DIAGRAM OF SFS HARDWARE DESIGN.

ERB-24A
SWITCH
MATRIX

DIFFERENTIAL
SIGNALS TO
DIA (5)

COM I------l.-

:===~ elM START
SIGNAL

Rl

NOISE 10K

SCALE R2

FACTOR 5K

BIAS R3

10K

l
AJ2

AJl

MJ3

'" '" 0
>--u
UJ z

MJ2 z
0
u

MJl

MJl

DJl

R4 R6

10K 10K

R5

10
10K

R8 5K
R7 5K

FIGURE 4. - TYPICAL (CHANNEL l) CLIPPING-SUMMING AMPLIFIER.

h

MDAC4 MDAC5
SCALE FACTOR SCALE FACTOR

CH 4 (CO) CH 5 (Cl)

MDAC2 MDAC3
SCALE FACTOR SCALE FACTOR

CH 2 (BO) CH 3 (B1>

MDACO MDACl
NOISE SCALE FACTOR
(RO) CH 1 (Al)

DAO DAl DA2 DA3 DA4 DA5
<UNUSED) CH 1 CH 2 CH 3 CH 4 CH 5

BIAS BIAS BIAS BIAS BIAS

POWER SUPPLY

FIGURE 5. - PC EXPANSION CHASSIS LAYOUT.

10 +

VOUT

Asp AUXILIARY
CONNECTOR

Asp BOARD

DDA-02 BOARD
(MDAC-O

DDA-02 BOARD
(MDAC-B)

DDA-02 BOARD
(MDAC-A)

DDA-06 BOARD

PC INTERFACE
BOARD

~u
"'< u..<=>
_Jl" <­zE
<0-
-u
'"

+

yr-;::::L-:::::~::;-I---=--=----_-_-<]C> COMPARATOR
CIRCUIT

tsC>
~ >l>

-'"'

I 1 l~ -- ~ ,-'--

CH 1 CH 2 CH 3 CH 4 CH 5
INST INST INST INST INST
AMP AMP AMP AMP AMP

T I '"I "-r ---r-
. .;>

I r= r= 'r :l

CHANNEL 1 CHANNEL 2 CHANNEL 3 CHANNEL 4 CHANNEL 5

CLIPPING CUPPING CUPPING CUPPING CUPPING
SUMMING SUMMING SUMMING SUMMING SUMMING

AMP AMP AMP AMP AMP

I I I
FIGURE 6. - BLOCK DIAGRAM OF ASP BOARD.

+12V

82K

22K

-12V

-12V

READY SIGNAL TO SFS

READY SIGNAL FROM CIM
(DOUBLE-ENDED)

SHIELDS

AJl MODIFIED SENSOR SIGNALS
(DOUBLE-ENDED)

ENG I NE SENSOR SIGNALS
(DOUBLE-ENDED)

SHIELDS

B
ENGINE SENSOR SIGNALS
(SIGNAL -ENDED)

AJ2 SCALED SENSOR SIGNAL

BIAS ERROR COMPONENT

NOI SE ERROR COMPONENT

+5V

lK

SIGNAL
TO 8255
CHIP

FIGURE 7. - COMPARATOR CIRCUIT FOR CIM/PROTOBOARD COMMUNICATIONS.

1 IN.-I

1 I' '"1 __ /______ 1.125 ".

I/\--~ I -----1:- AJ2 -~I: t
'1\

_ MJl __ }___ /1.125 IN
1 . -- \ I' i __ n_ .-- HJ2 --~:' t
1
:\

. MJ3 __ 1_______)1.125 IN.

----\- EI-l --Jj t
OJl --uJ------_u CC _ 1

1

.
121

IN. 8 IN -t: EO-l --A -~- .
1-1 IN.

2.5 IN I 1----2

1.5IN.--j·-1 T -$- "
r-G---4-- '~,~~:~~

1 IN. AC 2.125 IN.

~ I NPUT ON/OFF 1
I.==~ ____ ~ __ ~S~WI~TC~H~ ~:-____________ . I

6.75 IN.

FIGURE 8. I - ERB CHASSIS END PAN • EL.

PROGRAM
INITIALIZATION

PROGRAM
MAIN MENU

OPT = 1.2.3.4.5.6.7

I NSTRUCTI ONS

SCENARIO
STORAGE

AND
RETRIEVAL

SCENARIO
DEFINITION

AND
MODIFICATION

REAL-TIME
FAILURE

SIMULATION

TEST D/A HARDWARE

Ex IT PROGRAM

8

YES
OPT=1?

YES

No

YES
OPT=3?

YES

No

YES
OPT=5?

YES

No

FIGURE 9. - GENERAL CONCEPTUAL DESIGN OF SFS SOFTWARE.

* * * * * * * * * * * * * * * * * * * • * * * * * * * * *
Sensor Failure Simulator

MAIN MEND

*

1) INSTRUCTIONS

2) RETRIEVE Stored Failure Scenario
3) EDIT ... Current Failure scenario
4) Run. . .. CUrrent Failure scenario

5) TEST SFS Hardware/Software

6) QUIT

YOUR CHOICE?

FIGURE 10. - SENSOR FAILURE SIMULATOR MAIN MENU.

HOW TO USE THESE INSTRUCTIONS

Welcome to the Sensor Failure Simulator! You have just accessed
the on-line instruction file. This file describes the operation of the
Sensor Failure Simulator Crefered to as the SFS in the remaining pages
of this documentation).

These instructions consist of a number of pages of text. You may
page up and down through the text by pressing the PgUp and pgOn keys.
To return to this menu, press the Home key. To view the last page of
this text press the End key. You may exit the on-line instruction mode
at any time by pressing the carriage return/enter key. If later you
decide to return for more instruction, the program will automatically
begin with the page at which instruction was previouly terminated.
Enter a PgDn to proceed to the introduction.

FIGURE 11. - FIRST PAGE OF ON-LINE INSTRUCTIONS.

............ • * * * * • * • * * * * *

Sensor Failure Simulator

STORED SCENARIO MENU

* * * * * * * * * * *
CUrrent Scenario Description Shown Here

0) N1 Step Failure: 1000 rpm @ 0.5 sec 22NOV85
1) N1 Ramp Failure: 200 rpm/sec @ 1.0 sec 22NOV8S
2) N2 Step Failure: 1500 rpm @ 1.0 sec 25NOV85
3) N2 Ramp Failure: 250 rpm/sec @ 1.5 sec 2SNOV8S
4) N3 Step Failure: 1000 rpm @ 0.5 sec 29NOV85
5) N3 Ramp Failure: 200 rpm/sec @ 1.0 sec 29NOV85
6) N4 Step Failure: 1500 rpm @ 1.0 sec 05DEC85
7) N4 Ramp Failure: 250 rpm/sec @ 1.5 sec OSDEC85
8) N5 Step Failure: 1500 rpm @ 0.5 sec 10DEC85
9) N5 Ramp Failure: 250 rpm/sec @ 1.0 sec 10DEC85

Enter: Value or ~:

FIGURE 13. - TYPICAL MENU OF STORED SCENARIO DESCRIPTIONS.

Sensor Failure Simulator

FAILURE SCENARIO EDITOR

* * * * * * * * *

Sensor Failure Simulator Default Scenario

Channels To Be Failed Are Displayed IN Bold Type:

Channel 1)
Channel 2)
Channel 3)
Channel 4)
Channel 5)

Low Spool
High Spool
Combustor
Low turbine
Low Turbine

Shaft Speed
Shaft Speed
Exit Pressure
Exit Pressure
Inlet Temperature

Toggle On/Off By Channel Number or ~:

FIGURE 15. - FAILED CHANNELS MENU.

.* ****** ••• ****

Sensor Failure Simulator

STORED SCENARIO MENU

CUrrent Scenario Description Shown Here

1) RETRIEVE Stored Failure Scenario
2) DELETE Stored Failure Scenario
J) REPLACE Stored Failure Scenario
4) STORE CUrrent Failure Scenario

5) Return to Main Menu

YOUR CHOICE?

FIGURE 12. - SFS STORED SCENARIO MENU.

••• * •••• • • * * * * * * • * * • *

Sensor Failure Simulator

FAILURE SCENARIO EDITOR

Enter A 45 Character Description Of The Scenario:

a 5 10 15 20 25 30 35 40 45
Sensor Failure Simulator Default scenario

FIGURE 14. - ENTERING THE FAILURE SCENARIO EDITOR.

Sensor Failure Simulator

FAILURE SCENARIO EDITOR

* * • * * *.****

Sensor Failure Simulator Default Scenario

Define The Nominal Value For Each Failed Channel:

Channel 1: Low Spool Shaft Speed 10000.00 RPM*
Channel 2: High Spool Shaft Speed 13000. 00 RPM
Channel 3: Combustor Exit Pressure 400.0000 PSI
Channel 4: Low TUrbine Exit Pressure 50.00000 PSI
Channel 5: Low Turbine Inlet Temperature 1700. 000 'F

Enter: ValUe or ~:

FICj,URE 16. - MENU FOR NOMINAL CHANNEL VALUES.
VALUES SHOWN ARE FOR ILLUSTRATION ONLY.

* * * • .. • .. • .. • • • • • • • • • • .. • -. • • • • • • ..
Sensor Failure Simulator

FAILURE SCENARIO EDITOR .
Sensor Failure Simulator Default Scenario

Define The Maximum Value For Each Failed Channel:

Channel 1: Low Spool Shaft Speed 15000. 00 RPM"
Channel 2: High Spool Shaft Speed 15000.00 RPM
Channel 3: Combustor Exit Pressure 600.0000 PSI
Channel 4: Low Turbine Exit Pressure 100.0000 PSI
Channel 5: Low TUrbine Inlet Temperature = 2500.000 'F

Enter: Value or ~:

••••• *** ••••• * •• **.*.

Sensor Failure Simulator

FAILURE SCENARIO EDITOR

•• * ••••• ** ••••••• Sensor Failure Simulator Default Scenario

Channel 1 Active Failures Are In Bold Type:

1) Scale Factor = [
2) Bias = [
3) Ramp [
4) Noise S.F. = [

1.000000]
O.OOOOOOOE+OO RPM)
O.OOOOOOOE+OO RPM/sec
O.OOOOOOOE+OO]

Toggle On/Off By Number [,Value] or ~:

..

FIGURE 19. - TYPICAL MENU OF FAILURE MODES AND CONSTANTS.

.
. . . .

.
Sensor Failure Simulator

FAILURE SCENARIO EDITOR . • • • • •
Sensor Failure Simulator Default Scenario

Ramp Failure will Peak At Approx.

o minutes
8 seconds

Is This Acceptable? Y

. .
.

FIGURE 21. - TYPICAL DISPLAY FOR ACTIVE RAMP FAILURE.

. . .

..
Sensor Failure Simulator

FAILURE SCENARIO EDITOR
Sensor Failure Simulator Default Scenario

Define The Failure Delay For Each Failed Channel:

Channel 1: Low Spool
Channel 2: High Spool
Channel 3 : combustor
Channel 4: Low Turbine
Channel 5: Low Turbine

Shaft
Shaft
Exit
Exit
Inlet

Speed
Speed
Pressure
Pressure
Temperature

O.OOOOOE+OO SEC
O.OOOOOE+OO SEC
O.OOOOOE+OO SEC
O.OOOOOE+OO SEC
O.OOOOOE+OO SEC

Enter: Value or <OiIIIf--J:

FIGURE 18. - FAILURE DELAY MENU •

• * • • * • • • * • • • • • • • • • • • • • • • • • •

Sensor Failure Simulator

FAILURE SCENARIO EDITOR

..* ••••••••••••• * ••••••••••••

Sensor Failure simulator Default Scenario

Based On Failure Gains ____ _

Channel Value Will Exceed User Defined Limits:

A) User Defined Maximum
B) Calculated Maximum

Change "A" to "B"

15000.00
15501. 00

FIGURE 20. - MAXIMUM CHANNEL VALUE EXCEEDED.

. • .. • • • • • • • • • • .. • * •

Sensor Failure simulator

FAILURE SCENARIO EDITOR

• * ••
Sensor Failure Simulator Default Scenario

Noise Is Allowed On One Channel Only.
It Has Been Defined On 3 Channels:

Channell
Channel 2
Channel 4

Which One Channel Should Be Failed?

FIGURE 22. - TYPICAL DISPLAY FOR NOISE FAILURE ON
MUL TlPLE CHANNELS.

SENSOR FAILURE SIMULATOR EDITOR

SCENARIO CH. 1
rESCRIPTION GAINS

t---

FAILED CH. 2
CHANNELS GAINS

MENU

I--

NOMINAL CH. 3
VALUES GAINS

MENU

r----

MAXIMUM CH. 4
VALUES GAINS

MENU

I---

FAILURE CH. 5
DELAY GAINS
MENU

HOME = SCENARIO DESCRIPTiON
PGUP = PREVIOUS MENU
PGDN = NEXT MENU
END = EXIT EDITOR

FIGURE 23. - SFS FUNCTiON KEY TEMPLATE.

** •••• *.* ••• • * • • • • * • • • * • •

Sensor Failure Simulator

RUNNING FAILURE SCENARIO

Sensor Failure Simulator Default Scenario

How Many Seconds Should The scenario Run?
<defaul t=20. 00>

FIGURE 25. - QUERY FOR LENGTH OF SIMULATiON.

••• *****.****
Sensor Failure Simulator

'*' * * '*' * '*' * * * * * * '*'
Sensor Failure Simulator

RUNNING FAILURE SCENARIO

Sensor Failure Simulator Default Scenario

Initialize Sensor Failure Hardware? Y

FIGURE 24. - QUERY TO INiTiALIZE FAILURE HARDWARE.

* * * ••••• ** ••• * ••• ********
Sensor Failure Simulator

RUNNING FAILURE SCENARIO

* * '*' • ******
Sensor Failure Simulator Default Scenario

Ready To Begin Failure Scenario:

1) Begin Scenario
2) Begin Scenario on signal from elM

3) Return To Main Menu

Enter Run option:

FIGURE 26. - QUERY FOR SIMULATiON START SIGNAL.

Sensor Failure Simulator

RUNNING FAILURE SCENARIO

RUNNING FAILURE SCENARIO Sensor Failure Simulator Default Scenario

Sensor Failure simulator Default Scenario

** RUNNING **

FIGURE 27. - SIGNAL FOR EXECUTION OF USER INITIATED
REAL-TIME FAILURE SIMULATION.

__ Waiting For Signal From CIM __

star "*" Appears When Transient Begins

FIGURE 28. - SIGNAL FOR elM INITIATED REAL -TIME
FAILURE SIMULATION.

Sensor Failure Simulator
Sensor Failure Simulator

RUNNING FAILURE SCENARIO
RUNNING FAILURE SCENARIO

* * * * ********* ******
**********"'** * * * * * •• Sensor Failure Simulator Default Scenario . .
Sensor Failure Simulator Default Scenario

Manual Reset of Failed Channels (Bold Typed):

__ Finished Running at 20.000 seconds Channel 1) Low Spool Shaft Speed
Channel 2) High Spool Shaft Speed
Channel 3) Combustor Exit Pressure

Maximum Delta T is 0.002 seconds. Channel 4) Low turbine Exit Pressure
Maximum Delta T at 19.997 seconds. Channel 5) Low Turbine Inlet Temperature

Average Delta T is 0.001 seconds.

••• HIT...., TO CONTINUE
Toggle Off By Channel Number:

FIGURE 29. - DISPLAY OF RUN TIME STATISTICS. FIGURE 30. - TYPICAL MENU FOR MANUAL RESET OF FAILED
CHANNELS.

Sensor Failure Simulator

TEST MENU

0) Noise DAC-02/MDACO
1) Scale DAC-02/MDAC1 11) Noise Relay l/PAI
2) Scale DAC-02/MDAC2 12) Noise Relay 2/PA2
3) Scale DAC-02/MDAC3 13) Noise Relay 3/PA3
4) Scale DAC-02/MDAC4 14) Noise Relay 4/PA4
5) Scale DAC-02/MDAC5
6) Bias DDA-06/DAl
7) Bias DDA-06/DA2
8) Bias DDA-06/DA3
9) Bias DDA-06/DA4

10) Bias DDA-06/DA5

15) Noise Relay S/PBS
16) Failure Relay l/PBl
17) Failure Relay 2/PB2
18) Failure Relay 3/PB3
19) Failure Relay 4/PB4
20) Failure Relay 5/PB5

Enter Number To Toggle (exit ... 99)

FIGURE 31. - TYPICAL MENU FOR MANUALLY CONTROLLING HARDWARE.

1. Report No. 2. Government Accession No.

NASA TM-87271
4. Title and Subtitle

A Sensor Failure Simulator For Control System
Reliability Studies

7. Author(s)

Kevin J. Melcher, John C. Delaat, Walter C. Merrill
Lawrence G. Oberle, and Gerald G. Sadler and
Joseph H. Schaefer

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

15. Supplementary Notes

3. Recipient's Catalog No.

5. Report Date

July 1986
6. Performing Organization Code

505-62-01

8. Performing Organization Report No.

E-3137

10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

Kevin J. Melcher, John C. Delaat, Walter C. Merrill, Lawrence G. Oberle, and
Gerald G. Sadler, NASA Lewis Research Center, Joseph H. Schaefer, United States
Corps of Cadets, West Point, New York.

16. Abstract

A real-time Sensor Failure Simulator (SFS) was designed and assembled for. the
Advanced Detection, Isolation, and Accommodation (ADIA) program. Various designs
were considered. The design chosen features an 18M-PC/XT. The PC is used to
drive analog circuitry for simulating sensor failures in real-time. A user
defined scenario describes the failure simulation for each of the five 1ncom1ng
sensor signals. Capabilities exist for editing, saving, and retrieving the fail­
ure scenarios. The (SFS) has been tested closed~loop with the Controls Interface
and Monitoring (CIM) unit, the ADIA control, and a real-time F100 hybrid simula­
tion. From a productivity viewpoint, the menu driven user interface has proven
to be efficient and easy to use. From a real-time viewpoint, the software con­
trolling the simulation loop executes at greater than 100 cycles/sec.

17. Key Words (Suggested by Author(s»

Personal computer
Analog electronics
Fortran
Failure simulation

19. Security Classif. (of this report)
Unclass1fied

18. Distribution Statement

Unclassified - unlimited
STAR Category 33

20. Security Classlf. (of this page)
Unclass1fied

21. No. of pages

"For sale by the National Technical Information Service, Springfield, Virginia 22161

22. Price·

End of Document

