View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by NASA Technical Reports Server

NASA Technical Memorandum 87271
?NASA-TM-87271 19860022320

A Sensor Failure Simulator for Control
System Reliability Studies

Kevin J. Melcher, John C. Delaat, Walter C. Merrill,
Lawrence G. Oberle and Gerald G. Sadler

Lewis Research Center
Cleveland, Ohio

and

Joseph H. Schaefer
United States Corps of Cadets
West Point, New York

July 1986 o LIBRARY AR

0CT 2 31986

LANGLEY RESEARCH CENTER
LIBRARY, NASA
HAMPTON, VIRGINIA

NNASN gL

https://core.ac.uk/display/42839754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

E-3147

NASA Technical Library .

LR

31176 01427 7660
oMbyl Tt
A SENSOR FAILURE SIMULATOR FOR CONTROL SYSTEM RELIABILITY STUDIES

Kevin J. Melcher, John C. Delaat, Waiter C. Merrill,
Lawrence G. Oberle, and Gerald G. Sadler
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

and

Joseph H. Schaefer
United States Corps of Cadets
West Point, New York

SUMMARY

A real-time Sensor Failure Simulator (SFS) was designed and assembied for
the Advanced Detection, Isolation, and Accommodation (ADIA) program. Various
designs were considered. The design chosen features an IBM-PC/XT. The PC is
used to drive analog circuitry for simulating sensor fatlures in real-time. A
user defined scenario describes the failure simulation for each of the five
incoming sensor signals. Capabilities exist for editing, saving, and retriev-
ing the failure scenarios. The (SFS) has been tested closed-loop with the
Controls Interface and Monitoring (CIM) unit, the ADIA control, and a real-time
F100 hybrid simulation. From a productivity viewpoint, the menu driven user
interface has proven to be efficient and easy to use. From a real-time view-
point, the software controlling the simulation loop executes at greater than
100 cycles/sec.

INTRODUCTION

This report describes a general purpose device which can simulate sensor
failures in control systems. This device, called the SFS, is personal computer
based, programmable, reliable, and flexible. It also provides repeatable fail-
ure simulations. With these features the SFS can be used to efficiently eval-
uate and demonstrate sensor failure detection logic. The SFS interface
includes five separate analog signal flow paths through the device with inde-
pendent digital control of modifications (i.e., sensor failures) made to the
analog signals. The first application of the SFS is simulation of sensor faii-
ures for the Advanced Detection, Isolation, and Accommodation (ADIA) program
(ref. 1).

The goals of the ADIA program are to develop, implement, evaluate, and
demonstrate an ADIA algorithm. The development and real-time implementation of
the algorithm are described in reference 1. Algorithm performance was evalu-
ated using a real-time hybrid computer simulation of the F100 engine, the sen-
sor failure simulator, and the ADIA control (ref. 2). Finally, the algorithm
will be demonstrated on a full scale Pratt and Whitney F100 engine in the Lewis
Research Center's altitude facility. Both the ADIA control and the sensor
failure simulator will be used in this demonstration.

NZ&(p~ RITG+

This report describes the SFS which was developed for the ADIA program.
Included 1s a discussion of the design requirements as well as system concept
and philosophy. This is followed by a description of the hardware and the soft-
ware design. Finally a guide to operations for the simulator is given.

REQUIREMENTS

The SFS was developed for the ADIA program. The ADIA control currently
uses signals from five sensors: fan shaft speed.(N1), compressor shaft speed
(N2), combustor exit pressure (PT4), low turbine exit pressure (PT6), and low
turbine inlet temperature (FTIT). The SFS was designed to modify any combina-
tion of the five ADIA sensor signals and send the modified (or failed) signals
to the ADIA control system under experimental test conditions. In order for
the SFS to properly perform this task, certain initial design requirements had

to be met.

The first requirement for the SFS was that 1t must model failures accord-
ing to the following equation:

Yout = (scale factor « yy,) + bilas + noise

This equation describes a failure as the sum of: a scale factor multiplication
of the incoming sensor signal, a bias (step + ramp), and random white noise.

By modeling failures in this manner (fig. 1), the SFS should allow a user to
simulate most of the types of failures observed in engine sensors.

The next requirement imposed on the SFS was an ability to maintain signal
integrity. The signals leaving the SFS must be the same as the in-coming sig-
nals in a normal/unfailed mode. If a discrete system is chosen, there should
be no significant sampling delay. Safety is also an important consideration.

A device failure, such as loss of power to the SFS must not disrupt signal

flow in the normal mode.

It was also required that the SFS be a stand alone, portable unit. The
simulator will be required to perform i1ts task in several facilities. It must
first be located in the hybrid simulation facility at Lewis where it will be
validated. After validation in the hybrid lab, the simulator and control will
be moved to the Propulsion Systems Laboratory at Lewis. 1In this facility the
SFS will be used to test the ADIA control on a full scale F100 engine. It is
desirable that no disassembly/assembly need take place during this transition.

Another requirement was that the SFS have a convenient user interface with
reasonable programmability. The SFS should be simple to use and it should
provide for a high degree of productivity in an environment where overhead
costs are substantial. The time required to prepare a fallure scenario between
data points should be minimal.

Finally, the SFS should demonstrate reliability, maintainability, predict-
ability, and repeatability. The SFS should be reliable, having a high mean
time between failures. Safety is a major concern when testing a full-scale
engine. A reliable simulator will be necessary to 1imit the risk involved when
testing the ADIA control with the F100 engine. During testing, engine sensor
signals will be failed intentionally to check the fault accommodation and

detection of the control. These actions may be catastrophic to the engine,
especially if valid engine sensor signals are not available at all times. For
these reasons, the design must meet the safety requirements of the Lewis safety
comnittee. Also, overhead costs tend to be high in an experimental environment.
Therefore, 1t was desirable to choose a design which could be easily maintained,
thus reducing downtime. A modular design would meet this requirement. Pre-
dictable and repeatable performance i1s also necessary as a basic characteristic
for a good research tool.

As a final requirement, development time for the SFS must be within the
constraints of the ADIA program schedule. This would suggest a design which
would be based primarily on commercially available hardware.

SYSTEM CONCEPT AND PHILOSOPHY

Various conceptual designs were suggested for the SFS. 1In all of the
designs a common underlying philosophy was evident. This philosophy addresses
the failure modeling and the signal integrity requirements by combining a fail-
ure scenario controller with a direct analog signal path (fig. 2). The general
concept is to model fajlures using analog circuitry and to determine the size
and timing of the scale factor, bias or noise failure components using the
scenario controller. It was decided early in the design process that digital
sampie and hold hardware could not be permitted in the direct signal flow path
for both safety and performance reasons.

To ensure signal integrity during normal operation or in the event of a
loss of power to the SFS the following approach was adopted. Failure simula-
tion 1s initiated by a relay contract closure and terminated in the same man-
ner. The normally open relay contracts allow a direct, uninterrupted, signal
path during normal unfailed operation.

Four possible designs were suggested and studied for their ability to meet
the specified design requirements. The four designs were: (1) custom micro-
computer driven analog hardware, (2) personal computer driven analog hardware,
(3) analog computer driven analog hardware, and (4) programmable controller
driven analog hardware.

Each of the designs was considered for its ability to meet the simulator
design requirements. The custom microcomputer based design met all require-
ments except for development time constraints. It was not possible to build
and test the microcomputer design within scheduled deadlines. The personal
computer-based design met all of the design requirements. Required digital to
analog interface hardware was available "off the shelf." Custom development
would include the software, and analog summing circuit, and a communications
circuit for interfacing the PC with the Control Interface and Monitoring (CIM)
unit (ref. 3). It was determined that this development could be accomplished
within the necessary time constraints. The strictly analog design had several
deficiencies. The analog computer tends not to be user friendly and available
hardware is not portable. Also repeatability and reliability are difficult to
obtain. The programmable controller based design was also determined to be
undesirable. The available programmablie controller was designed for processes
with fixed logic. It was not designed to allow for program changes during
execution.

Based on the above requirements analysis, the PC/analog design was chosen
for the SFS. This design met all of the stated design requirements. Addi-
tionally, this design has the flexibility and generality to be used in other
failure detection studies and/or allow simulation of various other failure

models.

HARDWARE DESIGN

The design chosen for the SFS was based on a personal computer (PC)
interface/controller driving analog signal processor hardware. The PC used for
the SFS is a standard configuration IBM-PC/XT expanded to 640K bytes of memory.
An AST Six Pack/Plus expansion board was used for memory expansion. The AST
board also contains a clock which is used by the SFS software. An expansion
chassis with a PC interface houses most of the analog failure circuitry. This
circuitry is described in detail throughout the remainder of this section.

Figure 3 1s a block diagram of the SFS hardware design. Three general
observations can be made about this design. First, the five engine sensor
signals are direct inputs to the normally closed terminals of the ERB-24A
switch matrix. 1In the normal/unfailed mode, each of the engine signals com-
pletely bypasses the SFS and proceeds through the common terminals of the
switch matrix to the ADIA control. Second, the simulator may modify any number
of the five sensor signals by adding scale factor or bias errors to the ori-
ginal signal. A noise error may also be imposed on the any of the five sensor
signals, however it may be added to only one channel at a time. These modified
signals are fed to the normally open (NO) terminals of the switch matrix. The
computer may then select either a modified, or an unmodified signal for each of
the ADIA controller's five inputs. Third, the five engine signals are electri-
cally differnetial with no reference ground. The modified signals must be com-
patible in order to replace the unmodified signals. The simulator signals are
transformed into virtual-differential signals in the circuitry which combines
the contributions of the three error components: scale factor, bias, and noise.
These components are each produced in slightly different ways.

The scale factor error, or multiplication of the incoming signal by a
constant, is generated by using a METRABYTE DAC-02 multiplying digital-to-
analtog converter (MDAC) for each channel. The MDAC has two inputs, an analog
signal (in this case, one of the five engine signals) and a digitally encoded
number which the MDAC receives from the PC. The MDAC produces an analog volt-
age output equivalent to the product of i1ts inputs. Each DAC-02 circuit board
contains two MDACs. Thus, to cover the five engine signals, three DAC-02's

must be employed.

The bias errors for the five signals are generated using a METRABYTE
DDA-06 digital-to-analog converter (DAC). The DAC receives a digitally encoded
number from the computer representing the amount of bias to be added to the
in-coming analog signal, and generates an analog voltage, in the range +10 V,
proportional to this number. The DDA-06 provides six such DAC's, which leaves
one spare channel for future use.

The noise error is generated by a commercially available analog random
noise generator. The output from the noise generator is scaled using the
spare MDAC from the scale factor circuitry. The output from the MDAC is then
switched to any one of the five engine signals using spare relay channels on

4

the switch matrix. These spare relay channels are labelled ERB-24B in

figure 3. Both the switch matrix and the MDAC receive their commands from the
computer. Since only one noise signal is generated, only one of the five
engine signals can be modified using all three error components, at any one
time. The other four signals can be provided with any combination of scale
factor, and biasing errors.

For each of the five signals, the modified engine signal 1is generated by
summing contributions from the scale factor, bias and noise error components;
using an analog summing circuit, as shown in figure 4. This circuit was repli-
cated exactly for each of the five channels. It is a standard design, using
Zener diodes to 1imit the summed voltages to +10 V maximum; and providing a
virtual-differential output voltage to the switch matrix. The second op-amp in
figure 4 1s provided so that the summation is not inverted.

The DACs, MDACs and a custom analog signal processor board are found in
the expansion chassis. A layout of the expansion chassis is shown in figure 5.
There are two unused card slots in the expansion chassis, but only one unused
connector location, since the analog signal processor (ASP) board requires two
connectors.

A block diagram of the ASP board is shown in figure 6. At connector AJ1
are the ten lines representing the five differential input engine signals.
Each pair of these 1ines 1s an input to a Burr-Brown 3630 Instrumentation
Amplifier with unity gain. The resuiting output, a single-ended signal is one
of five output signals at connector AJ2. Also at connector AJ2 are 15 lines
(five triplets) representing signals from the three failure components. These
signals for scale factor error, bias error, and random noise are summed by one
of the five summing circuits as described previously. The five resulting
virtual-differential modified engine signals are then wired via ten 1ines to
connector AJ1. The ASP board contains the components and wiring for the five
instrumentation amplifiers, and the five summing and isolation amplifiers.

The ASP board also contains circuitry for a communications interface
between the Control Interface and Monitoring (CIM) unit and the SFS. This
application specific hardware is provided as a means of synchronizing the
beginning of failure simuiation with the beginning of data taking in the con-
trols computer. A D/A converter on the controls computer is used to send a
start signal to the SFS interface circuitry (fig. 7). On the ASP board, the
start signal is first converted from a differential signal to a single-ended
signal using an instrumentation amplifier. A comparator is then used to detect
when the start signal is high and to convert it to TTL levels. Finally, the
output of the comparator is sent to Port C of the 8255 chip on the DDA-06 board
where 1t can be detected by the SFS software.

The switch matrix chosen for this simulator is the METRABYTE ERB-24. The
ERB-24 provides 24 channels of double pole/double throw relays. Ten of these
relays are used by the SFS. 0f all the components selected, the ERB-24 is the
only one which does not reside on the PC bus. Due to its size this component
required a separate chassis. A1l interface wiring is done inside this chassis.
The end panel for the ERB-24 chassis is shown in figure 8. The eight connec-
tors labeled AJ1, AJ2, MJ1, MJ2, MJ3, EI1, DJ1, and EO1 correspond to the two
connectors for the ASP board, the connectors for the three DAC-02 MDAC boards,
the engine signal input connector, the connector for the DDA-06 DAC board, and

5

the engine signal output connector, respectively. The pin assignments for
these connectors are shown in tables I to VI.

SOFTWARE DESIGN

The SFS software was conceived as a menu driven program which would provide
four distinct capabilities: on-1ine program instruction, storage and retrieval
of failure scenarios, editing of failure scenarios, and real-time control of
the analog failure simulation hardware. The instruction capability was to be
designed as a means of providing operational instructions during program execu-
tion. These instructions should be both general and specific so that the SFS
would be as self contained as possible. The store/retrieve capability was to
allow the user to store and retrieve pre-defined faillure scenarios. This cap-
abi11ity would help provide the repeatability and high productivity so desired
in a research environment. The means of defining and modifying failure sce-
narios were provided by a failure scenario editor. This editor was to provide
an efficient and user-friendly method of modifying any or all of the components
which combine to form a failure scenario: the scenario description, the
failed/unfailed channels, the nominal and maximum channel values, the failure
delay for each channel, and the constants associated with the scale factor,
step, ramp, and noise failure modes. The simulation portion of the software
was assigned the task of real-time failure simulation based on information
contained in any given failure scenario. This task was to include software
which would scale failure scenario parameters, initialize the analog hardware,
and begin execution of real-time failure simulation based on a cue from the

CIM unit.

Although not in the original conceptual design, a fifth task was added to
the SFS software during development. This task provides the user with the
ability to trip relays or to set D/A constants directly from the keyboard.
This task was included to facilitate debugging of the hardware and software.

Once the general conceptual design for the SFS software was established
(fig. 9), the next step was to choose a method of implementation which would
provide for a highly efficient user interface. A menu driven approach was
chosen. This type of approach is very efficient if the program execution can
be described as a type of decision tree with a 1imited number of branches at
any node. This was the case for the SFS as it was conceived and this was the
approach taken during implementation.

The SFS currently makes use of 15 menus and numerous other prompts to
accomplish its tasks. The user interface has proven to be very efficient and
user-friendly. The scenario store/retrieve capability, while slightly cumber-
some, provides the user with readable, as well as retrievable, scenario
descriptions. The editor is easy to use, and very efficient due to the exten-
sive use of function keys for input. The transient capability is able to pro-
vide the desired resolution during simulation, 2 to 9 msec. And the test
capability has already proven useful in debugging both hardware and software.

Since the sensor failure simulator hardware was being implemented with an
IBM-PC/XT as the user interface, a standared PC language was required to imple-
ment the software. The primary language chosen for implementation of the SFS
software was FORTRAN. In particular, Ryan-McFarland Corporation's IBM Pro-
fessional FORTRAN (version 1.00) compiler was used to produce the executable

6

code. This version "is an implementation of the full standard ANSI X3.9-1978
with extensions" (ref. 4). These extensions include utilities for obtaining
the date and time from the Disk Operating System (DOS) clock.

As a secondary language, IBM Macro Assembler was chosen (ref. 5). FORTRAN
does not have inherent in it the ability to interface with real-time hardware.
Therefore 1t was necessary to write some assembler code for driving the analog
circuitry and for interfacing with the CIM unit. To obtain higher resolution
than was availabie from the DOS clock, it was also necessary to write an
assembly language routine that would read the real-time clock on the AST memory
expansion board. The 1 msec resolution available from the AST clock yields
smooth failure transients relative to the control update cycle.

The SFS source code, about 8000 1ines, is currently divided into 47 DOS
text files which occupy approximately 182 Kbytes of hard disk storage. The
FORTRAN code is contained in 42 files; one file for the main program (SFS.FOR),
33 files for subprograms, and nine files for common blocks. Common blocks are
stored in separate files and included by the compiler during compilation. Four
of the remaining five files contain subprograms written in Macro Assembler
which provide hardware to hardware and software to hardware interfaces. The
Tast “"source file" is the file that contains the text for on-line instructions.
A subprogram source file name is designated as the first eight letters of the
subprogram's name. The extension ".FOR" is used to denote a file containing
FORTRAN source code; the extension ".CMN" is used to denote a file containing
a common block, and the extension ".ASM" is used to denote a Macro Assembler
source code file. Table VII 1ists the source code file names, the name of the
subprogram contained in each file, and a brief description of each subprogram.
Table VIII 1ists the names of files containing common blocks, the name of.the
common contained in each file, and brief description of what is stored in the
common. Table IX shows the hierarchical structure of the SFS program. No
attempt has been made to s@ow multiple calls.

The FORTRAN and the assembly language subprograms are compiled and assem-
bled respectively. The object code produced by compilation of the main program
is stored in SFS.0BJ. O0bject code for the subprograms is stored together in a
single object 1ibrary, SFS.LIB. This is accomplished by using the 1ibrary
utility supplied with the Professional FORTRAN, version 1.10 of the IBM Library
Manager. Executable code is produced by using version 2.3 of the IBM Personal
Computer Linker (ref. 4) and is stored in SFS.EXE. '

The object code for the SFS is contained in two files which require a
total of approximately 182 Kbytes of hard disk storage. The object module of
the man program, SFS.0BJ, requires about 5 Kbytes The rest of the 182 Kbytes
is used for the object 1ibrary, SFS.LIB.

The last two files which are part of the SFS code are the file containing
the executable image, SFS.EXE, and the DOS text file containing instructions
for using the SFS, INSTRUCT.TXT. The executable code requires 147 Kbytes of
storage and the instruction file about 57 Kbytes.

GUIDE TO OPERATION

This section 1s designed as a user guide for the SFS. 1In it the operation
of the SFS is described in detail. The first part of this discussion will deal

1

with directory and file structures. The later part of the section will discuss
in-depth each of the various program menus.

It should be pointed out at this time that only one failure scenario at a
time resides in the PC's random access memory (RAM). This failure scenario is
called the current failure scenario. In most cases, the program will be work-
ing on/with the current failure scenario. A default scenario is defined during
the program initiaiization and becomes the current failure scenario until
changed by the user or replaced by the retrieval of a stored scenario.

It should also be pointed out at this time that some of the keys on the
keyboard are "mapped" during execution. FORTRAN does not provide an interrupt
capability for reading the keyboard. As a result some of the keyboard keys are
mapped or redefined to provide useful capabilities 1ike one-stroke input and use
of function keys. A more in-depth discussion on this topic will be presented
later in this paper. At this time the user is to be warned about terminating
program execution in an irregular manner. The effects of the key mapping are
such that, i1f execution is terminated irregularly, it may be necessary to
reboot the PC to return all keys to their original key codes.

Directory and File Structure

Three files are used to run the SFS program. These files are SFS.BAT,
SFS.EXE, and INSTRUCT,TXT; SFS.BAT resides in the directory \UTILITY on the
PC's hard disk and is the batch file which initiates program execution. The
second file mentioned above, SFS.EXE, contains the executable code and should
be located in the directory \SFS. Also residing in the \SFS directory on.the
hard disk, is the DOS text file, INSTRUCT.TXT, which contains text for on-line

instructions.

Although the SFS program and instructions are currently loaded from the
hard disk drive, they may also be loaded from a floppy disk. In either case
the directory and file structure should be the same as described above with
the exception that the SFS.BAT file may be stored in the floppy's root

directory.

' Initiating Program Execution

Initiate program execution by typing "SFS" in response to the DOS prompt
from anywhere but the \SFS directory. To get a printer listing of stored
scenario files (.SFS extension) before initiating program execution, type
"SFS /D" in response to the prompt.

Upon receiving the "SFS" command, DOS begins executing statements from the
SFS.BAT batch file (table XI). 1In 1ines 1 and 2, the ECHO and BREAK are turned
off. In 1ine 3, the DOS search path is defined so that the search for an exe-
cutable file proceeds from the current directory to the \SFS directory. Line 4
of the batch file changes the D0OS default directory to the \SCENARIO directory
where failure scenario files may be stored. Lines 5 and 6 check for the "/D"
parameter. If it has been included in the call to the batch file, a directory

1isting of all stored scenario files is routed to the printer. The SFS exe-
cutable code is loaded and program execution begins after the DOS command
processor receives 1ine 7. Ffor further explanation of these commands see the
DOS manual (ref. 7).

The SFS program begins by printing a title screen. This screen is dis-
played while program initialization takes place. After initialization is com-
pleted, this screen 1s replaced by the program's main menu (fig. 10).

The main menu presents the user with a 1ist of six options: (1) instruc-
tions, (2) retrieve stored failure scenario, (3) edit current failure scenario,
(4) run current failure scenario, (5) test SFS hardware/software, and (6) quit.
There are two ways to choose an action item from this menu. One way is to
enter the number associated with a desired action item. Another way is to
choose the default action item.

The default is displayed in reverse video. The default may be changed by
pressing the up arrow or the down arrow on the keyboard. It may also be
changed by entering the codes corresponding to these keys, "u<CR>" and "d<CR>"
respectively. The default may be selected by the carriage return/enter key.

Instructions

The first action item in the SFS main menu provides the user with an
on-line program reference. When the user chooses this action item, instruction
text is displayed. The first page of this text is shown in figure 11. The
user may page up and down through the text by pressing the PgUp and PgDn keys.
Entering the code "b<CR>" of "f<CR>" will have the same effect. Other keys
which may be used while in the instruction facility are the Home and End keys.
The Home key causes the instruction facility to return to the first page of
text. The End key causes the facility to proceed to the last page of text.

The ASCII codes for these keys are "Home<CR>" and "End<CR>" respectively. The
user may exit the instruction facility by pressing a carriage return/enter.

The text for the instruction facility is stored in the DOS text file
INSTRUCT.TXT. It is stored as a series of pages 80 columns wide by 22 lines
long. Macros are provided for including any ASCII character or sequence of
characters in this text. These macros cause ASCII codes to be inserted in each
page of text as it is read from the test file. Macros are listed in table XII.
Note that while the macros are multiple characters, the number of characters
displayed by the monitor will depend on the ASCII character or sequence of
characters which define a given macro. Also, note all DOS control sequences
must be followed by a space in the test. In particular, this applies to the
$f, $b, $r, and $n codes.

Storing and Retrieving Failure Scenarios

The second action item in the SFS main menu provides the user with cap-
abilities for storing and retrieving failure scenarios from disk storage.
When the user chooses this action item the stored scenario menu is displayed
(fig. 12).

The stored scenarios menu presents the user with five action items: (1)
RETRIEVE, (2) DELETE, (3) REPLACE, (4) STORE, and (5) RETURN. These items may
be chosen in a manner similar to the SFS main menu. Note that the user may
wish to return to the stored scenario menu without exercising the specified
action item; this may be accomplished by pressing the PgUp key or the PgDn key
any time after an action item has been selected.

Action item number one allows the user to retrieve, from a specified
stored scenario file, any scenario which has been stored in that file. A stored
scenario file is any DOS text file in which only scenarios are stored or will
be stored. One convention 1s to use a .SFS extension for denoting a failure
scenario file. When action item one is chosen, the user is prompted for a file
name. The default file name may be selected by pressing carriage return/enter
or a new file name entered by the user. File names may be any valid DOS file
name. If the file exists, the program will read the description of any sce-
nario stored in this file and present the user with a 1ist of the description(s)
(fig. 13). The user may then specify, by setting the default, which scenario
the program should RETRIEVE. When the specified scenario has been retrieved,
the program displays the new scenario description under the banner and returns

to the stored scenario menu.

Action item number two allows the user to delete, from a specified stored
scenario file, any scenario which has been stored in that file. When action
item two is chosen, the user is prompted for a file name. As with action item
one, the program will check for the files existence. If the file exists, the
program will read the description of any scenario stored in this file and
present the user with a 11st of these descriptions. The user may then specify,
by setting the default, which scenario the program should DELETE. When the
specified scenario has been deleted, the program returns to the stored scenario

menu.

Action 1tem number three allows the user to replace a stored scenario with
the current fallure scenario. When this action item is chosen, the user is
prompted for a file name. As with action items one and two, the program will
check for the files existence. If the file exists, the program will read the
description of any scenario stored in this file and present the user with a 1ist
of these descriptions. The user may then specify, by setting the default, which
scenario should be REPLACED by the current failure scenario. When the specified
scenario has been replaced, the program returns to the stored scenario menu.

Action i1tem number four allows the user to store the current failure
scenario in a specified file. MWhen this action item is chosen, the user is
prompted for a file name. The program will check for the files existence. If
the file exists and the specified file has the capacity, the current failure
scenario will be appended to the end of the file. There is a 1imit of ten (10)
failure scenarios per scenario file. If the file specified by the user does
not exist, the program notifies the user and asks if it should create a new
file. When the scenario is stored, the user is returned to the stored scenario

menu.

The user may return to the SFS main menu by selecting action item five.

10

Creating/Editing a Failure Scenario

The third action item in the SFS main menu is EDIT CURRENT FAILURE SCE-
NARIO. When the user selects this action item, the program enters the FAILURE
SCENARIO EDITOR.

The editor begins by displaying the description of the current failure
scenario (fig. 14). At this time, the user may choose to accept the current
description or replace it with a new description. Retention of the default
description may be accomplished by pressing carriage return/enter. A new
description may be defined by simply entering it from the keyboard.

After the user enters a description, the editor centers it below the ban-
ner and displays the Failed Channels menu (fig. 15). This menu allows the
user to select which channels will be failed during simulation. Failed chan-
nels are displayed in bold type; unfailed channels are displayed in normal
type. Each channel may be toggled between failed and unfailed by pressing the
number key corresponding to the given channel. A carriage return notifies the
program that the user is finished with this menu.

The next two menus in the failure scenario editor are necessary to estab-
1ish the relationship between the SFS output voltages and the engineering units
they represent. They allow the user to define the parameters of a failure sce-
nario in engineering units. The first menu is for specifying nominal channel
values (fig. 16). Each channel's nominal value should be set to the value, in
engineering units, represented by the incoming sensor signal at run time. The
second menu is for specifying maximum channel values (fig. 17). Each channel's
maximum value should be set to the value, in engineering units, which
represents full scale.

The constants associated with these menus may be changed in the following
manner. First, set the default (reverse video) over the channel which will be
modified. Use the up and/or down arrow key to set the default. Next, enter
the new value of the constant followed by a carriage return. Pressing carriage
return/enter by itself, causes the editor to proceed to the next menu. Note
that any channels defined as failed in the Channel Fallure menu will be dis-
played in bold text (high intensity) in these menus.

The failure delay menu (fig. 18) is the next menu displayed by the editor.
It is functionally the same as the menus used to set nominal and maximum chan-
nel values. This menu allows the user to specify, for each channel, some dead
time at the beginning of the transient. Actual failure simulation on each
channel will begin immediately folliowing the delay specified for that channel.
This menu provides the user with the capability to simulate multiple offset
fatlures.

After exiting the failure delay menu the editor will begin to display a
menu of failure modes and constants (e.g., scale factor, bias, ramp, and noise)
for each failed channel (fig. 19). Beginning with channel one and continuing
sequentially through channel five, these menus allow the user to specify the
failure modes and associated constants which define how a particular channel's
failure will be simulated. '

N

The menu for each channel failed will display four failure modes and four
associated constants. Note that any combination of active/inactive modes are
possible and that the active failure modes are displayed in bold type. A fail-
ure mode may be activated by simply depressing the associated number on the
keyboard followed by a carriage return/enter. To modify the constant of a
given failure mode, the user should enter the number corresponding to the fail-
ure mode followed by a delimiter (space or comma) followed by the new value of
the constant. Pressing carriage return/enter completes the sequence and the
constant's old value 1s replaced by the new.

In these menus the scale factor mode is always active and defaults to
unity; the other modes may either be active or inactive. The active scale
factor mode causes a channel's incoming signal to be multiplied by the scale
factor constant. The value of scale factor constant may range between +2. If
the bias mode is active, it has the effect of adding a step to the incoming
sensor signal. The height of the step is the value of the bias constant which
is only constrained by the specified maximum channel value. If the ramp fail-
ure mode is active, a bias is added to the incoming sensor signal which varies
linearly in time, the slope being the value of .the ramp constant. If the noise
mode is active, the incoming signal from the external noise generator is multi-
plied by the noise gain constant and added to the incoming sensor signal. The
noise gain constant is limited to the range *1. The noise failure is allowed
to be active on only one channel in the current failure scenario.

A single carriage return/enter will cause the editor to check for errors
in failure definition. First, the editor checks to see if the maximum channel
value is exceeded by the scale factor, step bias, or noise failures. If the
maximum value is exceeded, the editor presents the user with current maximum
and a suggested maximum. The user is asked if it is acceptable to replace the
current maximum with the suggested maximum (fig. 20). If the user chooses not
to accept the computed maximum, the editor returns to the failure mode menu.
This error checking takes place because the transient portion of the program
1imits the output signal to the maximum channel value in both the positive and
negative directions. ‘

After conflicts with the maximum channel value have been satisfactorily
resolved, the editor does some checking on the ramp failure mode. If the ramp
failure mode is active, the program will display the approximate time at which
the ramp will reach the channel maximum (fig. 21). The user is then prompted
to accept the status quo. If the peak time displayed is unacceptable, entering
an "n<CR>" will cause the editor to return to the failure mode menu. If the
peak time displayed is acceptable, the editor moves on to the menu for the
next failed channel.

When menus for all failed channels have been completed, the editor per-
forms one final error check. It was stated previously that noise may be
defined on only one channel. The editor will check this condition. If noise
has been defined on more than one channel, those channels are displayed in menu
form (fig. 22). The user is then asked to choose a single channel from the
1ist. During run time, noise will only be added to the specified channel.

When the editor determines that the scenario is essentially without error,
it queries the user one last time. This query allows the user to store the
failure scenario just defined. If the editor receives a positive reply, the
user will be prompted for a file name. The program will check for the files

12

existence. If the file exists and the specified file has the capacity, the
current failure scenario will be appended to the end of the file. Remember,
there i1s a 1imit of ten (10) failure scenarios per scenario file. If the file
specified by the user does not exist, the program notifies the user and asks if
it should create a new file. When the scenario is stored, the user is returned
to the SFS main menu.

At this time more discussion should be included about mapping keys to
specified codes. Most of the key mapping mentioned earlier was implemented
specifically for the editor. Some keys are mapped to SFS identifiable
sequences of ASCII codes before entering a menu and remapped to the original
single ASCII codes when exiting the menu. At other times during program execu-
tion, a carriage return s added to a key's ASCII code. This provides a cap-
ability for one stroke input (e.g., pressing key "1" becomes the same as
pressing key "1" followed by a carriage return). Key mapping is accomplished
by the control codes 1isted in reference 6. At any time during execution an
SFS identifiable ASCII sequence may be entered as an alternative to pressing
the key to which that sequence is mapped. The ten function keys, as well as
the Home, End, PgUp, and PgDn keys, are mapped to control codes recognized by
the editor. These codes allow the user the freedom of moving between noncon-
sective menus within the editor. This feature was added to enhance productiv-
ity in the research environment. Table X contains a 1ist of the function and
keypad keys recognized by the editor, the codes which are mapped to these keys,
and a short description of the keys functions. Figure 23 shows the function
key template.

Reai-Time Sensor Failure Simulation

The fourth action item in the SFS main menu is the heart of the SFS. This
is where the actual real-time sensor failure simulation takes place. When the
user chooses this action item the program requests permission to initialize the
D/A hardware (fig. 24). There are several places in this part of the program
where the user may abort the simulation and return to the main menu; this is
the first. If the user enters a character other than "Y" or "<CR>" the program
returns to the main menu.

If permission is granted by the user, the D/A hardware is initialize as
follows. First, the multiplying DAC for the noise, MDACO, 1s set to 0.0.
Second, the scale factor MDACs for the five sensor signals are set to 1.0.
Third, the bias DACs for the five sensor signals are set to 0.0. Forth, if the
noise failure is active for a given channel, the noise relay for that channel
is closed and all other noise relays are opened. Finally, if any channel has
been defined as failed, the failure relay for that channel is closed. At this
point, the signal flow path of all failed channels is redirected through the
failure circuitry. The hardware is ready to begin the simulation of sensor
failure(s).

After completing hardware initialization, the program does some software
initialization. The fallure gains specified for each channel are scaled and
stored as run-time gains for output to the D/A hardware. Bias and ramp con-
stants for channels 1 to 4 are scaled as follows:

failure gain
maximum channel value

run-time gain =

13

For channel five the maximum value must be converted, before scaling, from
Fahrenheit to Rankin. The formula for scaling the bias and ramp constants

then becomes:

failure gain
(maximum channel value + 459.67)

run-time gain =

Constants for the scale factor and noise failures are not normalized.

When initialization of the failure hardware is complete and the run-time
gains have been computed, the program queries the user once again (fig. 25).
Here the user is asked to specify how long the failure transient should run.

If a carriage return is depressed, the program uses the default displayed under
the query. If a run time other than the default is desired, that number may
be entered from the keyboard. The software currently 1imits the run time to
between 1 and 60 sec. Any integer or real number within these constraints may

be specified.

After obtaining the length of the failure transient from the user, the SFS
is ready to run the current sensor failure scenario. The program now presents
the user with three choices (fig. 26): (1) Begin Scenario, (2) Begin Scenario
on signal from CIM, and (3) Return to Main Menu. The desired action item is
specified by a two character sequence, the option number followed by a carriage
return/enter. 1If the user chooses to return to the main menu, the failure
relays are opened so that the sensors signals ‘are restored to their individual
through flow signal paths.

When the user chooses action item number one, three things happen: the
menu is erased; the message "** RUNNING **" appears with flashing asterisks
(fig. 27); the real-time failure simulation begins. There is a lag of about
100 msec between the time when the user enters the option number and the time
that failure simulation actually begins. Most of this lag is cause by output
to the monitor. o

When the user chooses action item number two a different sequence of
events takes place. First, the current menu is erased. Then, the program
notifies the user that it is waiting for a signal from the CIM unit to begin
the simulation. When transient data taking is initated by the CIM unit, it
sends a signal to the SFS. The SFS takes this signal as its cue to begin the
simulation. An asterisk "*" is displayed under the wait message just before
and during the real-time simulation (fig. 28). The dead time between the CIM
signal and the beginning of the transient is approximately 40 msec.

Simulation begins by initalizing the timer. After the timer is initial-
ized, the program enters the simulation loop. The simulation loop begins by
calling the timer. The timer returns the time, in seconds, that the simulation
has been running (run time). From this time and the time read at the beginning
of the previous loop a delta (dT) 1s computed. At this point, the program
begins to modify the constants of the D/A hardware.

If a channel is failed, and if the run time has just met or exceeded the
failure delay, the MDAC for the noise, the MDAC for the scale factor, and the
DAC for the bilas are all set to their failed values. Next, if the channel is
failed and if a ramp failure has been specified, a new value is computed for

14

the constant which is output to the bias DAC. The new value for the constant
1s computed as follows:

run-time bias = run-time blas + (slope * dT)

The variable slope on the right-hand side of the equation is the ramp constant
scaled by the maximum channel value. The value for the bias DAC constant is
then Yimited to values between 1. After computing the new value for the bias
DAC, it is output to the DAC. This series of steps is performed on channels 1
through 5 sequentially. :

At the end of the simulation loop, the program saves the current run time
and uses it to compute the next update interval (dT). If the run time is less
than the time specified as the length of transient, execution continues at the
beginning of the loop. When the run time meets or exceeds the length of the
transient, the program exists the real-time loop and displays some statistical
information about the run (fig. 29).

Note that this method of implementation allows the simulation loop to run
at the maximum speed of the PC. The dT will change with the number of opera-
tions performed inside the loop. The worst case scenario occurs when all five
channels fall at T = 0.0 and all five channels exhibit scale factor, bias, and
ramp failures. For this worst case scenario the statistics were found to be:
maximum dT is 0.009 sec, maximum dT occurs at 0.001 sec, and average dT is
0.005 sec. These figures are provided as a measure of the resolution of the
simulation.

The final screen displayed by this part of the program is a menu provided
for manually restoring channels to an unfailed state (fig. 30). It is dis-
played only if a failure has been simulated on one of the channels. Failed
channels are displayed in bold (high intensity) type. A11 channels MUST be
restored to an unfailed state. A channel may be restored to its unfailed state
by entering the channel number from the keyboard, . This trips the channel's
relay which causes the sensor signal to be switched from the failed signal path
to the through flow signal path. When all channels have been restored to an
unfailed state, the program returns to the main menu.

Testing the SFS Hardware

The fifth action item in the SFS main menu provides the user with the cap-
ability to set the D/A hardware constants and trip noise and failure relays
manually. Specifying this action item causes the program to erase the main
menu, to initialize the D/A hardware, and to present the user with a menu
similar to figure 31. This portion of the SFS was useful for debugging
problems with both hardware and software.

Before displaying the test menu, constants for the D/A hardware are
obtained from the current fallure scenario. These scaled values are then out-
put to the DACs and MDACs. The position of the noise relays is also set
according to the current failure scenario. However, the failure relays are
ALWAYS initialized to an unfailed state.

15

At this point the menu is displayed. If a DAC or an MDAC is Toaded with
a nonzero constant, the item will be displayed in bold type (high tensity).
When relays which are positioned to a failed state are also displayed as bold.

Constants may be checked or changed by entering a device number followed
by a carriage return/enter. Following this sequence, the current value of the
constant for the specified device is displayed in the lower left corner of the
monitor. Next a prompt for the device's constant and the 1imits of that con-
stant are displayed. If only a carriage return is entered, the value of the
constant for the device in question remains unchanged. If a new value is
entered by the user, this value is output to the proper device and displayed
in the lower left corner of the monitor. Values which are out of range cause
an error message to be displayed.

The user may exit the test menu and return to the SFS main menu by enter-
ing device number 99. Before returning to the main menu, the program returns
all relays to an unfailed state.

TERMINATING EXECUTION OF THE SFS

The last action item in the SFS main menu is for terminating program exe-
cution. When the user chooses action item number six, the main menu is erased
and the user is presented with the prompt "Exiting SFS: Are you Sure??." An
affirmative reply from the user causes program execution to be suspended. A
negative reply returns execution to the main menu. It is STRONGLY SUGGESTED
that program execution be terminated in this fashion. Terminating the program
in any other manner may leave failure hardware in an undesirable state.
Improper mapping of keyboard keys i1s also 1ikely to occur if the program execu-
tion is terminated in an other than proper manner.

SUMMARY OF RESULTS

A real-time Sensor Failure Simulator was designed and assembled for the
ADIA program. A personal computer-based design was chosen as the most favor-
able approach. In this design special analog hardware, driven by an IBM-PC/XT,
modifies five incoming sensor signals to produce simulated sensor failures.

A user defined scenario contains the information which is used by the SFS
to simulate sensor failures. The model used for simulating sensor failures
has three components: a scale factor component, a bias component (constant +
variable), and a noise component. Capabilities exist for editing, saving, and
retrieving the failure scenarios.

The Sensor Failure Simulator has been tested closed-loop with the CIM,
ADIA control, and a real-time F100 hybrid simulation. From a productivity
viewpoint, the menu driven user interface has proven to be efficient and easy
to use. From a real-time viewpoint, the software controlling the simulation
loop executes than 100 cycles/sec.

16

REFERENCES
Delaat, J.C.; and Merrill, W.C.: A Real-Time Implementation of an
Advanced Sensor Failure Detection, Isolation and Accommodation Algorithm.
AIAA Paper 84-0569, Jan. 1984.

Merrill, W.C.; and Delaat, J.C.: A Real-Time Simulation Evaluation of an
Advanced Detection, Isolation and Accommodation Algorithm for Sensor Fail-
ures in Turbine Engines. NASA TM-87289, 1986.

Delaat, J.C.; and Soeder, J.F.: Design of .a Microprocessor-Based Control,
Interface and Monitoring (CIM) Unit for Turbine Engine Controls Research.
NASA TM-83433, 1983.

IBM Personal computer Professional FORTRAN, Installation and Use. Ryan-
McFarland Corp., IBM Corp., 1984.

Macro Assembler Version 2.00. 1IBM Corp., 1984.

Disk Operating System, Technical Reference. Microsoft Corp., IBM Corp.,
1983. ‘

Disk Operating System. Microsoft Corp., IBM Corp., 1983.

11

APPENDIX A

TABLES

TABLE I. - AJ1 PIN CONNECTIONS -

PROTOBOARD DIFFERENTIAL SIGNALS
Pin To Function

1 DJ1-22 | CIM READY.

2 EI1-15 | Channel No. 2 in (*)
3 EI1-16 | Channel No. 2 in (-)
4 EI1-18 | Channel No. 4 in (+)
5 EI1-19 | Channel No. 4 in (-)
6 E01-25 | START from CIM (+)

7 EO01-24 | START from CIM (-)

8 17-NOA [Signal No. 1 out (+)
9 17-NOB | Signal No. 1 out (-)
10 19-NOA | Signal No. 3 out (*+)
11 19-NOB | Singal No. 3 out (-)
12 21-NOA | Signal No. 5 out (+)
13 21-NOB | Signal No. 5 out (-)
14 EIl-1 Channel No. 1 in (+)
15 EI1-2 Channel No,fl n (=)
16 EI1-4 Channel No. 3 in (%)
17 EI1-5 Channel No. 3 n (=)
18 EI1-7 Channel No. 5 in (+)
19 EI1-8 Channel No. 5 in (-)
20 NC
21 NC
22 18-NOA | Signal No. 2 out (+)
23 18-NOB | Signal No. 2 out (-)
24 20-NOA | Signal No. 4 out (+)
25 20-NOB | Signal No. 4 out (-)

TABLE II. - AJ2 PIN CONNECTIONS -
PROTOBOARD SINGLE ENDED SIGNALS

Pin To Function
1 1-CA NOISE No. 1
2 3-CA NOISE No. 2
3 5-CA NOISE No. 5
4 NC
5 DJ1-16 BIAS No. 1
6 DJ1-12 BIAS No. 3
7 DJ1-1 Bias No. 5
8 MJ2-23 SCALE No. 2 to adder
9 MJ3-23 SCALE No. 4 to adder
10 NC
11 MJ1-16 SCALE No. 1 from instr. amp
12 MJ2-16 SCALE No. 3 from instr. amp
13 MJ3-16 SCALE No. 5 from instr. amp
14 2-CA NOISE No. 2
15 4-CA NOISE No. 4
16 BNC (-) | NOISE GROUND
17 DJ1-14 BIAS No. 2
18 DJ1-2 BIAS No. 4
19 NC
20 MJ1-17 SCALE No. 1 to adder
21 MJ2-17 SCALE No. 3 to adder
22 MJ3-17 SCALE No. 5 to adder
23 NC
24 MJz-22 SCALE No. 2 from instr. amp
25 MJ3-22 SCALE No. 4 from instr. amp

TABLE III. - MJ1, MJ2, and MJ3 PIN CONNECTIONS -
MDAC (DAC-02) SCALE FACTOR SIGNALS

Connector MJl

Pin To Function
1-15] NC
16 | AJ2-11 SCALE No. 1 input to MDAC
17 | AJ2-20 SCALE No. 1 output from MDAC
18-21}1 NC :
22| BNC (+) NOISE Signal in
23 | 1-NOA, 2-NOA NOISE Signal out
3-NOA, 4-NOA, 5-NOA
24-25 | NC

Connector MJ2 -

Pin To Function

1-15 NC
16 AJ2-12 | SCALE No. 3 input to MDAC

17 AJ2-21 | SCALE No. 3 output from MDAC

18-21 | NC
22 | AJ2-24 | SCALE No. 2 input to MDAC

23 | AJ2-8 SCALE No. 2 output from MDAC

24-25 | NC
Connector MJ3
Pin To Functfon
1-15 | NC

16 | AJ2-13 | SCALE No. 5 input to MDAC
17 | AJ2-22 | SCALE No. 5 output from MDAC

22 | AJ2-25 | SCALE No. 4 input to MDAC
23 | AJ2-9 SCALE No. 4 output from MDAC

TABLE IV. - EI1 PIN CONNECTIONS -
ENGINE INPUT SIGNALS

Pin To Function

1 17-NCA, AJ1-14 | Channel No. 1 in (+)
2 17-NCB, AJ1-15 | Channel No. 1 in (-)
3 E01-3 Channel No. 2 shield
q 19-NCA, AJ1-16 | Channel No. 3 in (+)
5 19-NCB, AJ1-17 | Channel No. 3 in (-)
6 E01-6 Channel No. 4 shield
7 21-NCA, AJ1-18 | Channel No. 5 in (%)
8 21-NCB, AJ1-19 | Channel No. 5 in (-)
9 NC

10 NC

11 NC

12 NC

13 NC

14 EO1-14 Channel No. 1 shield

15 18-NCA, AJ1-2 Channel No. 2 in (+)
16 18-NCB, AJ1-3 Channel No. 2 in (-)

17 E01-17 Channel No. 3 shield
18 20-NCA, AJ1-4 Channel No. 4 in (+)

19 20-NCB, AJ1-5 Channel No. 4 in (-)
29 E01-20 Channel No. 5 shield

21 NC

22 NC

23 NC

24 NC

25 NC

TABLE V. - DJ1 PIN CONNECTIONS -
DAC (DDA-06) OUTPUT SIGNALS

Pin To Function
1 AJ2-7 BIAS No. 5
2 AJ2-18 | BIAS No. 4
3 E01-24 | ACK to CIM
4 ERB-4 To ERB relay board
5 ERB-5
6 ERB-6
7 ERB-7
8 ERB-8
9 ERB-9
10 ERB-10
11 ERB-11 | To ERB relay board
12 AJ2-6 Bias No. 3
13 NC
14 AJ2-17 | Bias No. 2
15 NC
16 AJ2-5 Bias No. 1
17 NC
18 NC
19 "1 NC
20 NC
21 NC o
22 AJdl-1 CIM Ready
23 ERB-23 | To ERB relay board
24 ERB-24
25 ERB-25
26 ERB-26
27 ERB-27
28 ERB-28
29 ERB-29
30 ERB-30
31 ERB-31
32 ERB-32
33 ERB-33
34 ERB-34
35 ERB-35
36 ERB-36
37 ERB-37 | To ERB relay board

TABLE VI. — EO1 PIN COONECTIONS -
SIMULATOR OUTPUT SIGNALS

Pin To Function
1 17-CA Channel No. 1 out (+)
2 17-C8 Channel No. 1 out (-)
3 EI1-3 Channel No. 2 shield
4 19-CA Channel No. 3 out i+)
5 19-CB Channel No. 3 out (-)
6 EIl-6 Channel No. 4 shield
7 21-cA Channel No. 5 out (+)
8 21-CB Channel No. 5 out (-)
9 NC

10 NC

11 NC

12 NC

13 NC

14 EI1-14 | Channel No. 1 shield

15 18-CA Channel No. 2 out (+)
16 18-CB Channel No. 2 out (-)

17 EI1-17 | Cahnnel No. 3 shield
18 20-CA Channel No. 4 out (+)

19 20-CB Chaneel No.: 4 out (-)
20 EI1-20 | Channel No. 5 shield

21 | NC

22 NC

23 NC

24 AJ1-7 START from CIM (-)

25 AJ1-6 START from CIM (+)

BNC connector (noise input)

(+) - MJ1-22

(=) - 1-NCA, 2-NCA, 3-NCA
4-NCA, 5-NCA, AJ2-16

MJI-2

TABLE VII. - PROGRAM

Program name

Cim

Edit

Edit Description

Edit Failures

Edit Gains

Edit Save

Edit Values

End of Fil

Erase Screen

Get Clock

GETDAT

GETTIM

Init 8255

DOS file
CIM.ASM

EDIT.FOR

EDITDESC.

EDITFAIL.

EDITGAIN.

EDITSAVE.

EDITVALU.

ENDOFFIL.

ERASESCR.

GETCLOCK.

INIT82255.ASM

DESCRIPTIONS FOR THE SENSOR FAILURE SIMULATOR PROGRAM

name

FOR

FOR

FOR

FOR

FOR

FOR

FOR

ASM

Description

FORTRAN callable assembly routine used by SFS to
begin failure simulation on cue from CIM unit.

FORTRAN subroutine which controls flow of the failure
scenario editor.

FORTRAN subroutine which allows user to change
description of current failure scenario.

FORTRAN subroutine which allows user to define which
channels of the current scenario will be failed.

FORTRAN subroutine which allows user to define type
of failure and associated constants for each failed
channel.

FORTRAN subroutine which allows the user to save the
current failure scenario in a DOS text file before
existing failure scenario editor.

FORTRAN subroutine which allows user to modify
nominal and maximum channel values as well as
failure delays for the current scenario.

FORTRAN logical function which sets the pointer to
the end of the currently open scenario file. True
is returned if no errors, otherwise false is
returned.

FORTRAN subroutine which writes the DOS control code
for clearing the CRT text screen.

FORTRAN callable assembly routine which reads the
real-time clock on the AST board. Returns as
integers minutes, seconds, tenths, hundredths, and
thousandths.

Non-standard ?ORTRAN callable subroutine whcih
returns the date from the DOS clock.

Non-standard FORTRAN callable subroutine which
returns the time from the DOS clock.

FORTRAN callable assembly routine which initializes
the 8255 chip on the Metrabyte DDA-06 DAC/parallel
output board. (Ports A and B initialized as outputs,
port C initialized as input.).

Program name

Init HDWR

Initialize

Instructions

Menu 1

Menu 2

Noise CHK

NonBlank

Open File

Read Instructions

Read Scenario

Read Timer

Run

DOS file name
INITHDWR.FOR

INITIAL.FOR

INSTRUCT.FOR

MENU1.FOR

~ MENU2.FOR

NOISECHK.FOR

NONBLANK.FOR

OPENFILE.FOR

READINST.FOR

READSCE.FOR

ZEROTIME,.FOR

RUN.FOR

~ TABLE VII.

Continued
Description

FORTRAN subroutine which prepares failure hardware
for transient simulation. Sets scale factor to 1.0
and bias to 0.0 then trips relays of failed channels.

FORTRAN subroutine which initailizes values for all
common blocks. Also calls subroutines which
initialize the anlaog hardware (Init 8255 and Init
HDWR) .

FORTRAN subroutine which calls READ INSTRUCTIONS to
read DOS text file containing instructions
(\NSFS\INSTRUCT.TXT) then displays the file contents
on the monitor in an organized fashion.

FORTRAN subroutine which displays SFS main menu,
prompts user and returns a correct response to the
main program.

FORTRAN subroutine which displays menu controlling
manipulation of stored scenarios, prompts user and
returns a correct response to STORE.

FORTRAN subroutine which checks failure scenario to
ensure that noise is defined for one channel only.
If not prompts user for correction.

FORTRAN integer function whose value is the position
of the last nonblank character in the character
variable which is its parameter.

FORTRAN subroutine used to open failure scenario
files for reading and writing.

FORTRAN subroutine which reads DOS text file
containing insturctions for using the SFS.

FORTRAN subroutine which reads a scenario (specified
by number) from the currently open scenario file.

FORTRAN subroutine which calls GET CLOCK to read the
real-time clock on the AST board and returns as the
value of its parameter the elaspsed time (in
seconds) since the last call to ZERO TIMER.
Resolution: 0.001 sec.

FORTRAN subroutine which controls flow of program's
real-time failure simulation.

Program name

Run Reset

Run Setup

Sensor Failure

SFS Out

Store

Store Delete

Store List

Store Replace

Store Retrieve

Store Save

Test

Wait

Write Scenario

Zero Timer

DOS file name
RUNRESET.FOR

RUNSETUP.FOR

SFS.FOR

SFSOUT.ASM

STORE.FOR

STOREDEL.FOR

STORELIS.FOR

STOREREP.FOR

STORERET.FOR

STORESAV.FOR

TEST.FOR

WAIT.FOR

WRITESCE.FOR

ZEROTIME.FOR

TABLE VII. Concluded

Description

FORTRAN subroutine which forces user to manually
reset relays for all failed channels to an unfailed
state at the end of failure simulation.

FORTRAN subroutine which prompts user to initialized
failure hardware. If positive response, calls INIT
HDWR .

FORTRAN MAIN PROGRAM.
execution.

Controls overall program

FORTRAN callable assembly routine used for ouput to
D/A converters, multiplying D/A converters, and
relays located on the Metrabyte DDA-06, DAC-02, and
ERB-24 boards respectively.

FORTRAN subroutine which controls flow for portion
of program which stores, retrieves, deletes,
and replaces scenarios in DOS text files.

FORTRAN subroutine which provides capability for user
to delete a previously stored scenario from a file.

FORTRAN subroutine which reads a specified scenario
file, presents user with a 1ist of scenarios stored
therein, prompts user for choise and returns number
of the stored scenario to the calling subroutine.

FORTRAN subroutine which provides capability to
replace any given scenario stored in a f11e with the
current failure scenario.

FORTRAN subroutine which provides capability for user
to retrieve from a file a previously stored scenario.

FORTRAN subroutine which provides a capability for
the user to save the current failure scenario in a
DOS text file.

FORTRAN subroutine which allows user to manipulate
the failure hardware directly from the PC's keyboard.

FORTRAN subroutine which uses GETTIM to suspend
program execution for a specified number of seconds.

FORTRAN subroutine which writes the current failure
scenario to the currently open scenario file.

FORTRAN subroutine which calls GET CLOCK to read the
real-time clock on AST board then stores the time of
day returned by GET CLOCK as the start time of the
transient.

Name of
common

(Blank)
SFS 00

SFS 01

SFS 02

Menu 00

Menu 11

Menu 12
Menu 21

Hardware

TABLE VIII. - COMMON BLOCK DESCRIPTIONS FOR THE SENSOR FAILURE SIMULATOR PROGRAM

DOS file name

BLANK .CMN
SFS00.CMN

SFSO01.CMN

SFS02.CMN

MENUOO.CMN
MENU11.CMN
MENU12.CMN
MENU21.CMN

HARDWARE .CMN

Type

character

character
integer
mixed

character
character

character
character

integer

Description

Contains DOS control codes and special ASCII graphics sequences.

Contains name of default scenario file, file header, current
scenario description and units for each channel.

Contains constants for number of channels, number of failures
per channel and maximum number of scenarios per file.

Contains logical and numerical data for the current failure
scenario.

Contains title and options used by subroutine menu 1.
Contains description of channel signals for editor.

Contains description of failure modes for editor.

Contains description of options for the stored scenario menu.

Contains device designations for the various pieces of D/A
hardware. :

TABLE IX. - HIERARCHICAL STRUCTURE OF THE SENSOR FAILURE SIMULATOR PROGRAN

Main Program Level 1 Level 2 Level 3 Level 4 Level 5
Sensor
Failure
Simulator Initialize Init 8255
Init HDWR SFS Out
Erase Screen
Menu 1 Erase Screen
NonBlank
Instructions | Read Instructions
Erase Screen
Store Erase Screen
Menu 2
Store Retrieve Open File NonBlank
Store List
Read Scenario NonBlank
Wait GETTIM
Store delete Open File NonBlank
Store List
NonBlank
Store Replace Open File NonBlank
Store List
Write Scenario | GETDAT
. GETTIM
NonBlank
NonB1ank
Store Save Open File NonBlank
End of File
Write Scenario | GETDAT
GETTIM
NonBlank
NonBlank
Edit Erase Screen
Edit Description | NonBlank

Edit Failure

TABLE IX. - HIERARCHICAL STRUCTURE OF THE SENSOR FAILURE SIMULATOR PROGRAN

(concluded)
Main Program Level 1 Level 2 Level 3 Level 4 Level 5
Edit Values
Edit Gains
Noise Check
Edit Save Open File NonBlank
End of File
Write Scenario| GETDAT
: GETTIM
NonB1lank
NonB1ank
Wait GETTIM
Run Erase Screen
Run Setup Init HDWR SFS Out
CIM
Zero Timer Get Clock
Read Timer Get Clock
(Zero Timer)
SFS Out
Run Reset SFS Out
Test Erase Screen

SFS Out

TABLE X. - EDITOR FUNCTION KEYS AND CODES

Key Code Function

F1 ml<CR>2 | display scenario description menu
F2 m6<CR> display failed channels menu

F3 m2<CR> display nominal values menu

Fa m7<CR> display maximum values menu °

F5 m3<CR> display failure delay menu
F6 m8<CR> display channel 1 failure modes

F7 m4<CR> display channel 2 failure modes
F8 m9<CR> display channel 3 failure modes
F9 m5<CR> display channel 4 failure modes

F10 mO<CR> display channel 5 failure modes
Home]| mO<CR> display scenario description menu
PgUp | b<CR> display previous menu

PgDn | f<CR> display next menu

End mx<CR> save scenario and exit editor
u<CR> move up one menu item

! d<CR> move down one menu item

a<CR> denotes a carriage return (ASCII decimal code 13)

TABLE XI. - DOS BATCH FILE SFS BAT

Line no. DOS Command line

echo of f

break off

path D:\sfs;D:\DOS;D:\utility
cd\scenario

if '%1'= ='/d'; dir *.sce > LPTI]
if '%1'= ='/D'; dir *.sce > LPT1
SFS

cd\

break on

OOoOoO~NOTOTPWN —

TABLE XII. - SPECIAL CODES FOR INSTRUCTION TEXT FILE

Code Translation

35 dollar sign (§)

Je escape character, ASCII decimal code 27

3t control sequence which causes subsequent test
to flash (blink)

3b control sequence which causes subsequent text
to appear bold (high intensity)

3r control sequence which causes subsequent text
to appear in reverse video (dark on light)

3n control sequence which causes subsequent text
to appear in normal video (non-flashing,
normal intensity, 1light on dark)

Jc### | ASCII character specified by ###, where

is a three digit integer between 000 and 255

GAIN RAMP + STEP RANDOM NOISE

ENGINE FAILED
SENSOR ———»{ X + + » SENSOR
SIGNAL SIGNAL
SCALE Bias No1se
FIGURE 1. - METHOD OF FAILURE MODELING.
FAILURE
SCENARIO
CONTROLLER
DATA FLOW
ENGINE MODIFIED
SENSOR c{ﬁgﬁ{¥;y QuTPUT SENSOR
SIGNALS SIGNALS
FIGURE 2. - GENERAL CONCEPTUAL DESIGN,
ENGINE DIFFERENTIAL
SEson,) [st gk
INSTRUMENTATION
AMPS
ERB-24A
SINGLE ENDED SIGNALS SWITCH
MATRIX
o SCALE_FACTOR
»1 MDACS) >
IBM | -
PC-XT [- DAC-02
UNITY coM
B GAIN
& »| DACS 1AS »| SUMMING IFFEREN NO
» 5) OP-AMPS SIGNALS
2 DDA-06 (5)
==
(%] -t
=
o
7
=
<
[N
b
w
=)
o
ONE SIGNAL
Va COMPARATOR
W » MDAC CIRCUIT
DAC-02

FIGURE 3. - BLOCK DIAGRAM OF SFS HARDWARE DESIGN.

DIFFERENTIAL
SIGNALS TO
DIA (5)

CIM START
SIGNAL

NoIse

SCALE

FACTOR

Bias

AJ2

A1

MJ3

MJ2

CONNECTORS

MJ1
MJ1

DA

R1

10K

R2

K

R3

10K

>

R7 S5

ov 10v
R4 R6
AN AAA-
10K 10K
+ 12V
3 - 1 RS
741 U6 0 AN
+ 3 10K
5
-2V

FIGURE 4. - TYPICAL (CHANNEL 1) CLIPPING-SUMMING AMPLIFIER.

C

-

4
SCALE FACTOR
CH 4 (CO)

SCALE FACTOR
CH 5 (N

F

MDAC2
SCALE FACTOR
CH 2 (BO)

3
SCALE FACTOR
CH 3 (BT)

NoISE SCALE FACTOR
(ROY CH 1 (A1
DAO DA1 DA2 DA DAY DAS
(UNUSED) CH 1 CH 2 CH3 CH 4 CHS
Bias Bias Bias B1as Bias

POWER SUPPLY

FIGURE 5. - PC EXPANSION CHASSIS LAYOUT.

AsP AUXILIARY
CONNECTOR

Asp BoarD

DDA-02 BoArD
(MDAC-O)

DDA-02 BOARD
(MDAC-B)
DDA-02 BOARD
(MDAC-A)

DDA-06 BoARD

PC INTERFACE
BOARD

[:> (’\\ READY SIGNAL To SFS
COMPARATOR <:] READY SIGNAL FRoM CIM
CIRCUIT (DOUBLE-ENDED)
= SHIELDS
AN
47:35:%{:> MODIFIED SENSOR SIGNALS
g (DOUBLE-ENDED)
P
== ENGINE SENSOR SIGNALS
(A:ﬁ — (DOUBLE-ENDED)
M SHIELDS
s S\
CH 1 CH 2 w3 CH 4 tn5
INST INST INST INST INST
AMP AMP AMP AMP AMP

l l47 LA, I I ;{:> ENGINE SENSOR SIGNALS

(SIGNAL-ENDED)

SCALED SENSOR SIGNAL
BIAS ERROR COMPONENT
NOISE ERROR COMPONENT

e

CHANNEL 1] |CHANNEL 2| JCHANNEL 3] |CHANNEL 4] |CHANNEL 5

CL1PPING | | CLIPPING | | CLIPPING CLIPPING CLIPPING
SUMMING SUMMING SUMMING SUMMING SUMMING
AMP AMP AMP AMP AMP

N] Hi |

SIGNAL FROM

F1GURE 6. - BLOCK DIAGRAM OF ASP BOARD.

+2v

CIM’s DAC

§ 1K
6
M 2 8
LM311 z —0O
SIGNAL
10 8255
1 CHIP

FIGURE 7. - COMPARATOR CIRCUIT FOR CIM/PROTOBOARD COMMUNICATIONS.

1 .~ 1.125 1o,
|
|
|

2.5 IN.

[*—1.5 IN.
—_.{ "BNC CONNECTOR

[

|

!

| (NOISE INPUT)
A D

1IN, AC ON/OFF
l INPUT SWITCH

= 6.75 IN. !

FIGURE 8. - ERB CHASSIS END PANEL.

PROGRAM
INITIALIZATION

l

PROGRAM
MAIN MENU

opT = 1,2.3.,4.5.6.7

INSTRUCTIONS

SCENARIO
STORAGE
AND
RETRIEVAL

SCENARIO
DEFINITION
AND

MODIFICATION

REAL-TIME
FAILURE
SIMULATION

TEST D/A HARDWARE

EXIT PROGRAM

FIGURE 9. - GENERAL CONCEPTUAL DESIGN OF SFS SOFTWARE.

* k Kk k Kk * Kk k Kk k k k Kk Kk kx k *k k hk *k Kk *x *k *k * Kk *
Sensor Failure Simulator

MAIN MENU

* ok k k¥ X
* ok K A F R *

k Kk ok k k k k k Kk Kk k h Kk b k Kk * k % Kk k k k Kk k Kk *

1) INSTRUCTIONS

2) RETRIEVE Stored Failure Scenario
3) EDIT ... Current Failure Scenario
4) Run Current Failure Scenario
5) TEST ... SFS Hardware/Software

6) QUIT

YOUR CHOICE?

FIGURE 10. - SENSOR FAILURE SIMULATOR MAIN MENU,

HOW TO USE THESE INSTRUCTIONS

Welcome to the Sensor Failure Simulator! You have just accessed
the on-line instruction file. This file describes the operation of the
Sensor Failure Simulator (refered to as the SFS in the remaining pages
of this documentation).

These instructions consist of a number of pages of text. You may
page up and down through the text by pressing the PgUp and PgDn keys.
To return to this menu, press the Home key. To view the last page of
this text press the End key. You may exit the on-line instruction mode
at any time by pressing the carriage return/enter key. If later you
decide to return for more instruction, the program will automatically
begin with the page at which instruction was previouly terminated.
Enter a PgDn to proceed to the introduction.

FIGURE 11. - FIRST PAGE OF ON-LINE INSTRUCTIONS.

* k k k k Kk k k &k k kR k *k k *k k *k & * & k *k Kk k * & *k *k %

*

* Sensor Failure Simulator *

* *

* STORED SCENARIO MENU *

* *

* k Kk k * k % % Kk *k Kk Kk *k Kk k * &k Rk %k * Kk Kk X *k * % * * *

* * Current Scenario Description Shown Here * ok
0) N1 Step Failure: 1000 rpm @ 0.5 sec 22NOV8S
1) N1 Ramp Failure: 200 rpm/sec @ 1.0 sec 22NOV8S
2) N2 Step Failure: 1500 rpm € 1.0 sec 25NOV85
3) N2 Ramp Failure: 250 rpm/sec @ 1.5 sec 25NOV85
4) N3 Step Failure: 1000 rpm @ 0.5 sec 29NOV85
5) N3 Ramp Failure: 200 rpm/sec € 1.0 sec 29NOV8S5S
6) N4 Step Failure: 1500 rpm € 1.0 sec 05DEC85
7) N4 Ramp Failure: 250 rpm/sec € 1.5 sec 05DEC85
8) NS Step Failure: 1500 rpm @ 0.5 sec 10DEC85
9) N5 Ramp Failure: 250 rpm/sec @ 1.0 sec 10DEC85

Enter: Value or ‘—‘:

FIGURE 13. - TYPICAL MENU OF STORED SCENARIO DESCRIPTIONS.

* &k Kk k Kk k k k k Kk k k & * k & * k * * k Kk * *k k * * K *
*

* Sensor Failure Simulator *
* *
* FAILURE SCENARIO EDITOR *
* *
* Kk K k *k k k * k Kk Kk k *k Kk x k Kk * *x Kk *k *x Kk %k Kk k *k Kk *

* * Sensor Failure Simulator Default Scenario * *

Channels To Be Failed Are Displayed IN Bold Type:

Channel 1) Low Spool Shaft Speed
Channel 2) High Spool Shaft Speed
Channel 3) Combustor Exit Pressure
Channel 4) Low turbine Exit Pressure
Channel 5) Low Turbine Inlet Temperature

Toggle On/Off By Channel Number or <_l:

FIGURE 15. — FAILED CHANNELS MENU.

* ok ok ok ok ko ko k ok k k Kk Kk Kk K Kk Kk k Kk Kk k Kk k ok k k * X

Sensor Failure Simulator

STORED SCENARIO MENU

* Ok ok k kB ¥

*
*
*
*
*
s

* k k ok ok ok k ok k k k k Kk k Kk * k k Kk k Kk x * Kk *k Kk *

*

* Current Scenario Description Shown Here * *

1) RETRIEVE Stored Failure Scenario
2) DELETE Stored Failure Scenario
3) REPLACE Stored Failure Scenario
4) STORE Current Failure Scenario

5) Return to Main Menu

YOUR CHOICE?

FIGURE 12. - SFS STORED SCENARIO MENU.

* Kk ok Kk k * k k k *k Kk k * * Kk *k *k k k *k *k *k *k * Kk *k * Kk *
: Sensor Failure Simulator :
: FAILURE SCENARIO EDITOR :
:********ﬂ*i**ﬂﬂ**ﬂ*i***ﬂ**i:
Enter A 45 Character Description Of The Scenario:
[s] 5 10 15 20 25 30 35 40 45
Sensor Failure Simulator Default Scenario
FIGURE 14, - ENTERING THE FAILURE SCENARIO EDITOR,
* d k k Kk Kk k Kk k kX k k k kK k k k k &k k k k * *k * kK X *k *
*
: Sensor Failure Simulator :
: FAILURE SCENARIO EDITOR :
i*k*i*ﬁ*i**t**t*****i**ii'ﬂ**:

*

* Sensor Failure Simulator Default Scenario * *

Define The Nominal Value For Each Failed Channel:

Channel 1: Low Spool Shaft Speed
Channel 2: High Spool Shaft Speed
Channel 3: Combustor Exit Pressure
Channel 4: Low Turbine Exit Pressure
Channel 5: Low Turbine Inlet Temperature

10000.00 RPM*
13000.00 REM
400.0000 PSI
50.00000 PSI
1700.000 °F

Enter: vValue or {—':

FIGURE 16. - MENU FOR NOMINAL CHANNEL VALUES,
VALUES SHOWN ARE FOR ILLUSTRATION ONLY.

* k *k %k Kk k k k k *k k k & *k k k k k k *k X K k * *k Kk %k KX K * k k k % Kk kX k k * k k *k Kk &k k k k Kk kK k * *k *k * k * %k *
* * * *
* Sensor Failure Simulator * * Sensor Failure Simulator *
* * * *
* FAILURE SCENARIC EDITOR * * FAILURE SCENARIO EDITOR *
* * L *
* k h ok k Kk Kk h k k k k k k k & k k %k k k * *k h Kk * k * * d ok ok ok Kk Kk k k k %k %k kx Kk k k *x *x k k Kk *k k k X *k * k * h
* * Sensor Failure Simulator Default Scenario * * ok Sensor Failure Simulator Default Scenario * %
Define The Maximum Value For Each Failed Channel: Define The Failure Delay For Each Failed Channel:
Channel 1: Low Spool Shaft Speed = 15000.00 RPM’ Channel Low Spool Shaft Speed = 0.00000E+00 SEC
Channel 2: High Spool Shaft Speed = 15000.00 RPM Channel High Spool Shaft Speed = 0.00000E+00 SEC
Channel 3: Combustor Exit Pressure = 600.0000 PSI Channel Combustor Exit Pressure = 0.00000E+00 SEC
Channel 4: Low Turbine Exit Pressure = 100.0000 PSI Channel Low Turbine Exit Pressure = 0.00000E+00 SEC
Channel 5: Low Turbine Inlet Temperature = 2500.000 °F Channel Low Turbine Inlet Temperature = 0,00000E+00 SEC
Enter: Value or «f—': Enter: Value or «f§-J:
FIQURE 17. - MENU FOR MAXIMUM CHANNEL VALUES, FIGURE 18. - FAILURE DELAY MENU.
VALUES SHOWN ARE FOR ILLUSTRATION ONLY.
*k ko k k ok k Kk k k ok Kk k k k * k k k * k Kk k * Kk * * x % K * k hk %k k k k k k *k *k % & k %k * k * k Kk *k *k *k *x *k Kk k Kk *
* * * *
* Sensor Failure Simulator * * Sensor Failure Simulator *
* * * *
* FAILURE SCENARIC EDITOR * * FAILURE SCENARIO EDITOR *
* * * *
k ko k ok Kk ok Kk h % %k k k h k * k Kk k k k k *k Kk Kk * & k * * Kk * h k Kk % K Kk *k *k k k * Kk k N Kk k k % Kk * k Kk k Kk * *
* ok Sensor Failure Simulator Default Scenario * * & Sensor Failure Simulator Default Scenario * %
channel 1 Active Failures Are In Bold Type:
Based On Failure Gains
1) Scale Factor = [1.000000 1 _—
2) Bias = [0.0000000E+00 RPM) Channel Value Will Exceed User Defined Limits:
3) Ramp = { 0.0000000E+00 RPM/sec]
4) Noise S.F. = [0.0000000E+00) A) User Defined Maximum = 15000.00
B) Calculated Maximum = 15501.00
Toggle On/Off By Number [,Value] or 4—1: Change "A"™ to "B" ? Y
F1GURE 19. - TYPICAL MENU OF FAILURE MODES AND CONSTANTS. FIGURE 20, - MAXIMUM CHANNEL VALUE EXCEEDED.

* ok ok k k ok ok ok k k k k X %k kK k kK X %k k k k kX kX %k kK *k k *
*
* Sensor Failure Simulator *
* Kk k * k k Kk Rk Kk Kk k Kk *k k Kk *k k &k X ¥ & & *k % * %k * *x & * *
* * * FAILURE SCENARIO EDITOR *
* Sensor Failure Simulator * * *
* * * & ok ok k k k ok k k ok ok & ok ok ok ok ok k ok Kk ok k& k ok Kk K
* FAILURE SCENARIO EDITOR *
* * * x Sensor Failure Simulator Default Scenario * k
* k Kk % k x k k * k k k *k %k * *k *x k Kk Kk *k *k k Kk k k % % *k
* * Sensor Failure Simulator Default Scenario *
Noise Is Allowed On One Channel Only.
It Has Been Defined On 3 Channels:
Ramp Failure Will Peak At Approx. Channel 1
Channel 2
0 minutes Channel 4
8 seconds
Is This Acceptable? Y Which One Channel Should Be Failed?
FIGURE 21. - TYPICAL DISPLAY FOR ACTIVE RAMP FAILURE. FIGURE 22, - TYPICAL DISPLAY FOR NOISE FAILURE ON

MULTIPLE CHANNELS.

SENSOR_FAILURE SIMULATOR EDITOR
SCENARIO cH, 1
DESCRIPTION GAINS
FAILED CH. 2
CHANNELS GAINS
MENU
NOMINAL CcH. 3
VALUES GAINS
MENU
MAXIMUM
VALUES AT
MENU
k k k k k & * k k k %k *k k k k x k k X * k kK * * k ¥ * Kk *
* *
FAILURE CH. 5 * Sensor Failure Simulator *
DELAY GAINS * *
MENU * RUNNING FAILURE SCENARIC *
* *
k k k Kk k k ok k Kk * k k & *x k &k & %k k Kk Kk k Kk *k *k * *k *k %
HOME = SCENARIO DESCRIPTION * Sensor Failure Simulator Default Scenario * x
PGUP = PREVIOUS MENU
PGDN = NEXT MENU
END = EXIT EDITOR
Initialize Sensor Failure Hardware? Y
FIGURE 23. - SFS FUNCTION KEY TEMPLATE. FIGURE 24. - QUERY TO INITIALIZE FAILURE HARDWARE.
* k Kk k k Kk k k ok k %k k k k k k k k *k k k *k k * *k *k *k k *
* *
* Sensor Failure Simulator *
* *
* RUNNING FAILURE SCENARIO *
* *
* k Kk k Kk k Kk ok k ok k * % Kk k k k k k Kk * * *k Kk k * k * K
* & k % k % *k & Kk k * Kk Kk * Kk k * k Kk & & * k *k * * * *
* Sensor Failure Simulator Default Scenario * *

Sensor Failure Simulator

Ready To Begin Failure Scenario:

[LR

*
*
RUNNING FAILURE SCENARIO *
*
*

* k k k k * h Kk * k %k k &k * &k *k * Kk % Kk &k *x &k * * * %
1) Begin Scenario

* % Sensor Failure Simulator Default Scenario * 2) Begin Scenario on signal from CIM

3) Return To Main Menu

How Many Seconds Should The Scenario Run? . .
<default=20.00> Enter Run Option:

FIGURE 25. - QUERY FOR LENGTH OF SIMULATION. FIGURE 26. - QUERY FOR SIMULATION START SIGNAL.

* k Kk k & k k ok k A Kk *k A Kk * Kk *k k Kk Kk *k * ¥ Kk * k * &k *

: Sensor Failure Simulator :

* k k & Kk k k k k k Kk %k ok k & k *k * ¥ k * k *x *k k * * *k * : RUNNING FAILURE SCENARIO :

E Sensor Failure Simulator : : I R E E R R R E RN E] :
*

: RUNNING FAILURE SCENARIO * * Sensor Failure Simulator Default Scenario * *
*ii-ti*tt*i*i***i**i*t*tﬂﬁiﬁ*:
* % Sensor Failure Simulator Default Scenario * *

Waiting For Signal From CIM
Star "*" Appears When Transient Begins
% RUNNING #*% *

FIGURE 27. - SIGNAL FOR EXECUTION OF USER INITIATED FIGURE 28, - SIGNAL FOR CIM INITIATED REAL-TIME
REAL-TIME FAILURE SIMULATION. FAILURE SIMULATION,

* %k k k & % * k * ok k Kk h k k *k Kk % & & k * k *
Sensor Failure Simulator

RUNNING FAILURE SCENARIO

LIE S

d ok ok ok ok ok ok k ok k ok ok Kk ok k k Kk kN ok ok k ok X

* % Sensor Failure Simulator Default Scenario

* Kk k k

LR

* Kk x

* *

Finished Running at 20.000 seconds

Maximum Delta T is 0.002 seconds.
Maximum Delta T at 19.997 seconds.
Average Delta T is 0.001 seconds.

#%% HIT € TO CONTINUE ###

FI1GURE 29. - DISPLAY OF RUN TIME STATISTICS.

* %k N H B H

0) Noise
1) Scale
2) Scale
3) Scale
4) Scale
5) Scale
6) Bias
7) Bias
8) Bias
9) Bias
10) Bias

Enter Number

E N

*

*

Sensor Failure Simulator

RUNNING FAILURE SCENARIO

Sensor Failure Simulator Default Scenario

Manual Reset of Failed Channels (Bold Typed }:

Toggle Off By

Channel 1)
Channel 2)
Channel 3)
Channel &)
Channel 5)

Low Spool
High Spool
Combustor
Low turbine
Low Turbine

Shaft Speed

Shaft Speed

Exit Pressure
Exit Pressure
Inlet Temperature

Channel Number:

* k k k kK k Kk k ok h k Kk k k Kk k k ok k k kK kK k k k *

*

FIGURE 30. - TYPICAL MENU FOR MANUAL RESET OF FAILED

CHANNELS.

Sensor Failure Simulator

TEST MENU

DAC-02/MDACO
DAC-02/MDAC1
DAC-02/MDAC2
DAC-02/MDAC3
DAC-02/MDAC4
DAC-02/MDACS
DDA-06/DA1
DDA-06/DA2
DDA-06/DA3
DDA-06/DA4
DDA-06/DAS

20)

To Toggle (exit=99)

Noise
Noise
Noise
Noise
Noise
Failure
Failure
Failure
Failure
Failure

* k k k k k k Kk ok ok k k& k ok Kk Kk ok k ok k k ok ok Kk Kk

Relay 1/PAl
Relay 2/PA2
Relay 3/PA3
Relay 4/PAd
Relay 5/PB5
Relay 1/PBl
Relay 2/PB2
Relay 3/PB3
Relay 4/PB4
Relay 5/PBS

* ok ok ok ok k k k ok k Kk ok k ok Kk ok ok kA K kK Kk Kk kKK

*
*
*
*
*

FIGURE 31. - TYPICAL MENU FOR MANUALLY CONTROLLING HARDWARE.

d k ok k ok ok kA ok ok ok k Kk ok ok ok ok ok ko k ko ko k ko kK K

*
*
*
*
*
*

*

1. Report No. 2. Government Accession No.

NASA TM-87271

3. Recipient's Catalog No.

4. Title and Subtitle

A Sensor Failure Simulator For Control System
Reliability Studies

5. Report Date

July 1986

6. Performing Organization Code

505-62-01

7. Author(s)
Kevin J. Melcher, John C. Delaat, Walter C. Merrill
Lawrence G. Oberle, and Gerald G. Sadler and
Joseph H. Schaefer

8. Performing Organization Report No.

E-3137

9. Performing Organization Name and Address
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

10. Work Unit No.

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

13. Type of Report and Period Covered
Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Corps of Cadets, West Point, New York.

Kevin J. Melcher, John C. Delaat, Waliter C. Merrill, Lawrence G. Oberle, and
Gerald G. Sadler, NASA Lewis Research Center, Joseph H. Schaefer, United States

16. Abstract

A real-time Sensor Failure Simulator (SFS) was designed and assembled for. the
Advanced Detection, Isolation, and Accommodation (ADIA) program. Various designs
were considered. The design chosen features an IBM-PC/XT. The PC 1s used to
drive analog circuitry for simulating sensor failures in real-time. A user
defined scenario describes the failure simulation for each of the five incoming
sensor signals. Capabilities exist for editing, saving, and retrieving the fail-
ure scenarios. The (SFS) has been tested closed-Toop with the Controls Interface
and Monitoring (CIM) unit, the ADIA control, and a real-time F100 hybrid simula-
tion. From a productivity viewpoint, the menu driven user interface has proven
to be efficient and easy to use. From a real-time viewpoint, the software con-
troll1ing the simulation loop executes at greater than 100 cycles/sec.

17. Key Words (Suggested by Author(s))
Personal computer

. Analog electronics
Fortran
Failure simulation

18. Distribution Statement

Unclassified - unlimited
STAR Category 33

20. Security Classif. (of this page)

19. Security Classif. (of this report)
Unclassified

Unclassified

21. No. of pages 22. Price*

*For sale by the National Technica! Information Service, Springfield, Virginia 22161

End of Document

