49 research outputs found
Mechanism of Deep-focus Earthquakes Anomalous Statistics
Analyzing the NEIC-data we have shown that the spatial deep-focus earthquake
distribution in the Earth interior over the 1993-2006 is characterized by the
clearly defined periodical fine discrete structure with period L=50 km, which
is solely generated by earthquakes with magnitude M 3.9 to 5.3 and only on the
convergent boundary of plates. To describe the formation of this structure we
used the model of complex systems by A. Volynskii and S. Bazhenov. The key
property of this model consists in the presence of a rigid coating on a soft
substratum. It is shown that in subduction processes the role of a rigid
coating plays the slab substance (lithosphere) and the upper mantle acts as a
soft substratum. Within the framework of this model we have obtained the
estimation of average values of stress in the upper mantle and Young's modulus
for the oceanic slab (lithosphere) and upper mantle.Comment: 9 pages, 7 figure
The role of engagement in teleneurorehabilitation: A systematic review
The growing understanding of the importance of involving patients with neurological diseases in their healthcare routine either for at-home management of their chronic conditions or after the hospitalization period has opened the research for new rehabilitation strategies to enhance patient engagement in neurorehabilitation. In addition, the use of new digital technologies in the neurorehabilitation \ufb01eld enables the implementation of telerehabilitation systems such as virtual reality interventions, video games, web-based interventions, mobile applications, web-based or telephonic telecoach programs, in order to facilitate the relationship between clinicians and patients, and to motivate and activate patients to continue with the rehabilitation process at home. Here we present a systematic review that aims at reviewing the effectiveness of different engagement strategies and the different engagement assessments while using telerehabilitation systems in patients with neurological disorders. We used PICO\u2019s format to de\ufb01ne the question of the review, and the systematic review protocol was designed following the Preferred Reported Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Bibliographical data was collected by using the following bibliographic databases: PubMed, EMBASE, Scopus, and Web of Science. Eighteen studies were included in this systematic review for full-text analyses. Overall, the reviewed studies using engagement strategies through telerehabilitation systems in patients with neurological disorders were mainly focused on patient self-management and self-awareness, patient motivation, and patient adherence subcomponents of engagement, that are involved in by the behavioral, cognitive, and emotional dimensions of engagement. Conclusion: The studies commented throughout this systematic review pave the way for the design of new telerehabilitation protocols, not only focusing on measuring quantitative or qualitative measures but measuring both of them through a mixed model intervention design (1). The future clinical studies with a mixed model design will provide more abundant data regarding the role of engagement in telerehabilitation, leading to a possibly greater understanding of its underlying components
Opinion dynamics: models, extensions and external effects
Recently, social phenomena have received a lot of attention not only from
social scientists, but also from physicists, mathematicians and computer
scientists, in the emerging interdisciplinary field of complex system science.
Opinion dynamics is one of the processes studied, since opinions are the
drivers of human behaviour, and play a crucial role in many global challenges
that our complex world and societies are facing: global financial crises,
global pandemics, growth of cities, urbanisation and migration patterns, and
last but not least important, climate change and environmental sustainability
and protection. Opinion formation is a complex process affected by the
interplay of different elements, including the individual predisposition, the
influence of positive and negative peer interaction (social networks playing a
crucial role in this respect), the information each individual is exposed to,
and many others. Several models inspired from those in use in physics have been
developed to encompass many of these elements, and to allow for the
identification of the mechanisms involved in the opinion formation process and
the understanding of their role, with the practical aim of simulating opinion
formation and spreading under various conditions. These modelling schemes range
from binary simple models such as the voter model, to multi-dimensional
continuous approaches. Here, we provide a review of recent methods, focusing on
models employing both peer interaction and external information, and
emphasising the role that less studied mechanisms, such as disagreement, has in
driving the opinion dynamics. [...]Comment: 42 pages, 6 figure
Rapid Chromosome Evolution in Recently Formed Polyploids in Tragopogon (Asteraceae)
Polyploidy, frequently termed "whole genome duplication", is a major force in the evolution of many eukaryotes. Indeed, most angiosperm species have undergone at least one round of polyploidy in their evolutionary history. Despite enormous progress in our understanding of many aspects of polyploidy, we essentially have no information about the role of chromosome divergence in the establishment of young polyploid populations. Here we investigate synthetic lines and natural populations of two recently and recurrently formed allotetraploids Tragopogon mirus and T. miscellus (formed within the past 80 years) to assess the role of aberrant meiosis in generating chromosomal/genomic diversity. That diversity is likely important in the formation, establishment and survival of polyploid populations and species.Applications of fluorescence in situ hybridisation (FISH) to natural populations of T. mirus and T. miscellus suggest that chromosomal rearrangements and other chromosomal changes are common in both allotetraploids. We detected extensive chromosomal polymorphism between individuals and populations, including (i) plants monosomic and trisomic for particular chromosomes (perhaps indicating compensatory trisomy), (ii) intergenomic translocations and (iii) variable sizes and expression patterns of individual ribosomal DNA (rDNA) loci. We even observed karyotypic variation among sibling plants. Significantly, translocations, chromosome loss, and meiotic irregularities, including quadrivalent formation, were observed in synthetic (S(0) and S(1) generations) polyploid lines. Our results not only provide a mechanism for chromosomal variation in natural populations, but also indicate that chromosomal changes occur rapidly following polyploidisation.These data shed new light on previous analyses of genome and transcriptome structures in de novo and establishing polyploid species. Crucially our results highlight the necessity of studying karyotypes in young (<150 years old) polyploid species and synthetic polyploids that resemble natural species. The data also provide insight into the mechanisms that perturb inheritance patterns of genetic markers in synthetic polyploids and populations of young natural polyploid species
Classical Morphology of Plants as an Elementary Instance of Classical Invariant Theory
It has long been known that structural chemistry shows an intriguing correspondence with Classical Invariant Theory (CIT). Under this view, an algebraic binary form of the degree n corresponds to a chemical atom with valence n and each physical molecule or ion has an invariant-theoretic counterpart. This theory was developed using the Aronhold symbolical approach and the symbolical processes of convolution/transvection in CIT was characterized as a potential “accurate morphological method”. However, CIT has not been applied to the formal morphology of living organisms. Based on the morphological interpretation of binary form, as well as the process of convolution/transvection, the First and Second Fundamental Theorems of CIT and the Nullforms of CIT, we show how CIT can be applied to the structure of plants, especially when conceptualized as a series of plant metamers (phytomers). We also show that the weight of the covariant/invariant that describes a morphological structure is a criterion of simplicity and, therefore, we argue that this allows us to formulate a parsimonious method of formal morphology. We demonstrate that the “theory of axilar bud” is the simplest treatment of the grass seedling/embryo. Our interpretations also represent Troll's bauplan of the angiosperms, the principle of variable proportions, morphological misfits, the basic types of stem segmentation, and Goethe's principle of metamorphosis in terms of CIT. Binary forms of different degrees might describe any repeated module of plant organisms. As bacteria, invertebrates, and higher vertebrates are all generally shared a metameric morphology, wider implications of the proposed symmetry between CIT and formal morphology of plants are apparent
One thousand plant transcriptomes and the phylogenomics of green plants
Abstract: Green plants (Viridiplantae) include around 450,000–500,000 species1, 2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life
BOREHOLES WATER LEVEL AND EARTHQUAKE’S PREDICTION (2011-2013)
Studies of precursors and events that occur before an earthquake is one of the most important problem that arose in todays’ seismology. Earthquake prediction has become the issue that needs to be solved, it will help us to forecast destructive earthquake. In this article we will discuss water level daily monitoring in several boreholes located in different parts of Georgia
Study of geomagnetic variations in Georgia and Establishment of anomaly nature of earthquake Precursors
Before strong earthquake magnetic precursors denoted by many authors, but must to say, that more of them don’t satisfy stern criterions. There are many examples of geomagnetic anomaly in Georgia too: a few weeks before earthquakes in Spitak, anomaly grows of low frequency geomagnetic pulsation amplitudes were fixed in Geophysics Laboratory of Dusheti. The, “When, where and how” earthquake prediction problem is not solved but is an actual problem for a long time. From 1989 researches on possible connection between geomagnetic variations and incoming earthquake started in INRNE. (Mavrodiev S. Cht., Thanassoulas C., Possible correlation between electromagnetic earth fields and future earthquake, INRNE-Bas, Seminar proceeding, July 23-27, 2001, Sofia, Bulgaria, ISBN 954-9820-05-X,2001). From February 2006 Ukraina was included in INRNE, BAS geomagnetic and Earthquake monitoring. From January 2009 Georgia with its Geomagnetic observatory of Dusheti was also included in INRNE, BAS. For estimation of the geomagnetic variations as a reliable precursor the specific time analysis was discovered for digital definition of Geomagnetic Quake and proposed a way for interval defined from the extremum of local tide variations [ S. Cht. Mavrodiev, 2001]. Georgian Geomagnetic stations can input important information for space dependences of precursor intensity as part of complex regional NETWORK of PrEqTiPlaMagInt 206 collaboration (Prediction Earthquake Time Place Magnitude Intensity). We introduce the primary work-up results of data received from the Dusheti Magnetic Observatory which was worked up for investigation of earthquake prediction on the basis of geomagnetic variations
A Decision Support System in the Context of an Applied Game for Telerehabilitation
Telerehabilitation is a growing area of research and clinical practice which attempts to mitigate some of the major problems in chronic disease rehabilitation programs: short-staffed clinical care teams, great demand for complex face-to-face treatments, and lack of tools for reaching, monitoring and aiding target clinical populations. Telerehabilitation attempts to solve this through the use of easily accessible digital tools such as mobile and web-based applications which often rely on some form of data collection and analysis. Empirically tested perspectives on the integration of those data-driven tools in the real-time decision-making process of clinical care practitioners are still lacking. In this paper, we present a Decision Support System prototype, designed in the context of an applied game as a part of a comprehensive telerehabilitation software system, with the purpose of supporting real-time dynamic data visualization, understanding of patient gameplay and care routine patterns and, ultimately, enhancing the clinical care and design teams' decision- making processes
METHOD OF STANDARD DEVIATION FOR ANALYSIS OF CAUCASUS BOREHOLE WATER LEVEL DATA
In this work it is explored by Method of Standard Deviation for Analysis of Hydrodynamic parameter. For that it was researched Hydrogeodynamic parameters of several earthquakes in Armenia and Georgia by following the earthquakesin South Caucasus and for comparative analysis it was used Hydrogeodynamic parameter of the Networks of Armenia and Georgia. The result of the monitoring of water level variation parameter indicated a direct connection between deformation processes to strong earthquakes