136 research outputs found

    Dynamic Smooth Sliding Control Applied to UAV Trajectory Tracking

    Full text link
    This paper proposes a sliding mode controller with smooth control effort for a class of nonlinear plants. The proposed controller is created by allowing some constant parameters of the earlier smooth sliding control (SSC) to vary as a function of the output tracking error, improving the control chattering alleviation in practical implementations. Furthermore, during the sliding mode, the new scheme can synthesize a range of controllers, such as fixed gain PI controllers and approximations of the standard Super-Twisting Algorithm (STA), as well as, the variable gain Super-Twisting Algorithm (VGSTA). A complete closed-loop stability analysis is provided. In addition, realistic simulation results with an unmanned aerial vehicle (UAV) model, incorporating aerodynamic effects and internal closed-loop controllers, are obtained and validated via experiments with a commercial hexacopter

    Seismic structure of the southern Gulf of California from Los Cabos block to the East Pacific Rise

    Get PDF
    Multichannel reflection and coincident wide-angle seismic data collected during the 2002 Premier Experiment, Sea of Cortez, Addressing the Development of Oblique Rifting (PESCADOR) experiment provide the most detailed seismic structure to date of the southern Gulf of California. Multichannel seismic (MCS) data were recorded with a 6-km-long streamer, 480-channel, aboard the R/V Maurice Ewing, and wide-angle data was recorded by 19 instruments spaced every similar to 12 km along the transect. The MCS and wide-angle data reveal the seismic structure across the continent-ocean transition of the rifted margin. Typical continental and oceanic crust are separated by a similar to 75-km-wide zone of extended continental crust dominated by block-faulted basement. Little lateral variation in crustal thicknesses and seismic velocities is observed in the oceanic crust, suggesting a constant rate of magmatic productivity since seafloor spreading began. Oceanic crustal thickness and mean crustal velocities suggest normal mantle temperature (1300 degrees C) and passive mantle upwelling at the early stages of seafloor spreading. The crustal thickness, width of extended continental crust, and predicted temperature conditions all indicate a narrow rift mode of extension. On the basis of upper and lower crust stretching factors, an excess of lower crust was found in the extended continental crust. Total extension along transect 5W is estimated to be similar to 35 km. Following crustal extension, new oceanic crust similar to 6.4-km-thick was formed at a rate of similar to 48 mm a(-1) to accommodate plate separation

    Microbial Communities Under Distinct Thermal and Geochemical Regimes in Axial and Off-Axis Sediments of Guaymas Basin

    Get PDF
    Cold seeps and hydrothermal vents are seafloor habitats fueled by subsurface energy sources. Both habitat types coexist in Guaymas Basin in the Gulf of California, providing an opportunity to compare microbial communities with distinct physiologies adapted to different thermal regimes. Hydrothermally active sites in the southern Guaymas Basin axial valley, and cold seep sites at Octopus Mound, a carbonate mound with abundant methanotrophic cold seep fauna at the Central Seep location on the northern off-axis flanking regions, show consistent geochemical and microbial differences between hot, temperate, cold seep, and background sites. The changing microbial actors include autotrophic and heterotrophic bacterial and archaeal lineages that catalyze sulfur, nitrogen, and methane cycling, organic matter degradation, and hydrocarbon oxidation. Thermal, biogeochemical, and microbiological characteristics of the sampling locations indicate that sediment thermal regime and seep-derived or hydrothermal energy sources structure the microbial communities at the sediment surface

    The role of temporary accommodation buildings for post-disaster housing reconstruction

    Get PDF
    The number of houses damaged or destroyed after disasters is frequently large, and re-housing of homeless people is one of the most important tasks of reconstruction programmes. Reconstruction works often last long and during that time, it is essential to provide victims with the minimum conditions to live with dignity, privacy, and protection. This research intends to demonstrate the crucial role of temporary accommodation buildings to provide spaces where people can live and gradually resume their life until they have a permanent house. The study also aims to identify the main problems of temporary accommodation strategies and to discuss some principles and guidelines in order to reach better design solutions. It is found that temporary accommodation is an issue that goes beyond the simple provision of buildings, since the whole space for temporary settlement is important. Likewise, temporary accommodation is a process that should start before a disaster occurs, as a preventive pre-planning. In spite of being temporary constructions, these housing buildings are one of the most important elements to provide in emergency scenarios, contributing for better recovery and reconstruction actions.The first author gratefully acknowledges the financial support of Fundacao para a Ciencia e a Tecnologia, FCT, through grant SFRH/BD/73853/2010

    Microbial Communities Under Distinct Thermal and Geochemical Regimes in Axial and Off-Axis Sediments of Guaymas Basin

    Get PDF
    Cold seeps and hydrothermal vents are seafloor habitats fueled by subsurface energy sources. Both habitat types coexist in Guaymas Basin in the Gulf of California, providing an opportunity to compare microbial communities with distinct physiologies adapted to different thermal regimes. Hydrothermally active sites in the southern Guaymas Basin axial valley, and cold seep sites at Octopus Mound, a carbonate mound with abundant methanotrophic cold seep fauna at the Central Seep location on the northern off-axis flanking regions, show consistent geochemical and microbial differences between hot, temperate, cold seep, and background sites. The changing microbial actors include autotrophic and heterotrophic bacterial and archaeal lineages that catalyze sulfur, nitrogen, and methane cycling, organic matter degradation, and hydrocarbon oxidation. Thermal, biogeochemical, and microbiological characteristics of the sampling locations indicate that sediment thermal regime and seep-derived or hydrothermal energy sources structure the microbial communities at the sediment surface

    Modelling gas-liquid mass transfer in wastewater treatment : when current knowledge needs to encounter engineering practice and vice versa

    Get PDF
    Abstract Gas–liquid mass transfer in wastewater treatment processes has received considerable attention over the last decades from both academia and industry. Indeed, improvements in modelling gas–liquid mass transfer can bring huge benefits in terms of reaction rates, plant energy expenditure, acid–base equilibria and greenhouse gas emissions. Despite these efforts, there is still no universally valid correlation between the design and operating parameters of a wastewater treatment plant and the gas–liquid mass transfer coefficients. That is why the current practice for oxygen mass transfer modelling is to apply overly simplified models, which come with multiple assumptions that are not valid for most applications. To deal with these complexities, correction factors were introduced over time. The most uncertain of them is the α-factor. To build fundamental gas–liquid mass transfer knowledge more advanced modelling paradigms have been applied more recently. Yet these come with a high level of complexity making them impractical for rapid process design and optimisation in an industrial setting. However, the knowledge gained from these more advanced models can help in improving the way the α-factor and thus gas–liquid mass transfer coefficient should be applied. That is why the presented work aims at clarifying the current state-of-the-art in gas–liquid mass transfer modelling of oxygen and other gases, but also to direct academic research efforts towards the needs of the industrial practitioners

    Modelos de crecimiento y producción en España: historia, ejemplos contemporáneos y perspectivas

    Get PDF
    En el presente trabajo se presenta una revisión sobre los modelos forestales desarrollados en España durante los últimos años, tanto para la producción maderable como no maderable y, para la dinámica de los bosques (regeneración, mortalidad). Se presentan modelos tanto de rodal completo como de clases diamétricas y de árbol individual. Los modelos desarrollados hasta la fecha se han desarrollado a partir de datos procedentes de parcelas permanentes, ensayos y el Inventario Forestal Nacional. En el trabajo se muestran los diferentes submodelos desarrollados hasta la fecha, así como las plataformas informáticas que permiten utilizar dichos modelos. Se incluyen las principales perspectivas de desarrollo de la modelización forestal en España.In this paper we present a review of forest models developed in Spain in recent years for both timber and non timber production and forest dynamics (regeneration, mortality). Models developed are whole stand, size (diameter) class and individual-tree. The models developed to date have been developed using data from permanent plots, experimental sites and the National Forest Inventory. In this paper we show the different sub-models developed so far and the friendly use software. Main perspectives of forest modeling in Spain are presented.The models described in this paper were funded by different regional, national and European projects, and some of them were elaborated by the authors. This work was funded by the Spanish Government by the SELVIRED network (code AGL2008-03740) and the strategic project «Restauración y Gestión Forestal» (code PSE-310000-2009-4)
    corecore