1,717 research outputs found

    Low Energy Singlets in the Excitation Spectrum of the Spin Tetrahedra System Cu_2Te_2O_5Br_2

    Full text link
    Low energy Raman scattering of the s=1/2 spin tetrahedra system Cu_2Te_2O_5Br_2 is dominated by an excitation at 18 cm^{-1} corresponding to an energy E_S=0.6\Delta, with \Delta the spin gap of the compound. For elevated temperatures this mode shows a soft mode-like decrease in energy pointing to an instability of the system. The isostructural reference system Cu_2Te_2O_5Cl_2 with a presumably larger inter-tetrahedra coupling does not show such a low energy mode. Instead its excitation spectrum and thermodynamic properties are compatible with long range Neel-ordering. We discuss the observed effects in the context of quantum fluctuations and competing ground states.Comment: 5 pages, 2 figures, ISSP-Kashiwa 2001, Conference on Correlated Electron

    Electronic Raman scattering in Tl2Ba2CuO6+x: symmetry of the order parameter, oxygen doping effects, and normal state scattering

    Full text link
    Single crystals of the optimally doped, moderately and strongly overdoped high temperature superconductor Tl2Ba2CuO6+x (Tl-2201) with Tc=80, 56 and 30K, respectively, have been investigated by polarized Raman scattering. By taking the peak position of the B_1g component of electronic Raman scattering as 2Delta_0 we found that the reduced gap value (2Delta_0/k_BT_c) strongly decreases with increasing doping. The behavior of the low frequency scattering for the B_1g and B_2g scattering components is similar for optimally doped and overdoped crystals and can be described by a w^3 - and w -law, respectively, which is consistent with a d-wave symmetry of the order parameter. In contrast to the optimally doped Tl-2201 in both, moderately and strongly overdoped Tl-2201, the relative (compared to the B_1g) intensity of the A_1g scattering component is suppressed. We suggest that the van Hove singularity is responsible for the observed changes of Raman intensity and reduced gap value with doping. Electronic Raman scattering in the normal state is discussed in the context of the scattering from impurities and compared to the existing infrared data. The scattering rate evaluated from the Raman measurements is smaller for the overdoped samples, compared to the moderately overdoped samples.Comment: 7 pages, 7 figure

    Anomalous frequency and intensity scaling of collective and local modes in a coupled spin tetrahedron system

    Full text link
    We report on the magnetic excitation spectrum of the coupled spin tetrahedral system Cu2_{2}Te2_{2}O5_{5}Cl2_{2} using Raman scattering on single crystals. The transition to an ordered state at TNCl_{N}^{Cl}=18.2 K evidenced from thermodynamic data leads to the evolution of distinct low-energy magnetic excitations superimposed by a broad maximum. These modes are ascribed to magnons with different degree of localization and a two-magnon continuum. Two of the modes develop a substantial energy shift with decreasing temperature similar to the order parameter of other Neel ordered systems. The other two modes show only a negligible temperature dependence and dissolve above the ordering temperature in a continuum of excitations at finite energies. These observations point to a delicate interplay of magnetic inter- and intra-tetrahedra degrees of freedom and an importance of singlet fluctuations in describing a spin dynamics.Comment: 7pages, 6figures, 1tabl

    Magnetic Bound States in Dimerized Quantum Spin Systems

    Full text link
    Magnetic bound states are a general phenomenon in low dimensional antiferromagnets with gapped singlet states. Using Raman scattering on three compounds as dedicated examples we show how exchange topology, dimensionality, defects and thermal fluctuations influence the properties and the spectral weight of these states.Comment: 3 pages, 1 figure, proceedings of the SCES'98, Paris, to be published in Physica

    Ergodicity conditions for upper transition operators

    Get PDF

    Substitution effects on spin fluctuations in the spin-Peierls compound CuGeO_3

    Full text link
    Using Raman scattering we studied the effect of substitutions on 1D spin fluctuations in CuGeO_3 observed as a spinon continuum in frustration induced exchange scattering. For temperatures below the spin-Peierls transition (T_{SP}=14K) the intensity of this continuum at 120-500 cm^{-1} is exponentially suppressed and transferred into a 3D two-magnon density of states. Besides a spin-Peierls gap-induced mode at 30 cm^{-1} and additional modes at 105 and 370 cm^{-1} are observed. Substitution of Zn on the Cu-site and Si on the Ge-site of CuGeO_3 quenches easily the spin-Peierls state. Consequently a suppression of the spin-Peierls gap observable below T_{SP}=14K as well as a change of the temperature dependence of the spinon continuum are observed. These effects are discussed in the context of a dimensional crossover of this compound below T_{SP} and strong spin-lattice interaction.Comment: 9 pages, 2 eps figures include

    Electronic Raman scattering of Tl-2223 and the symmetry of the supercon- ducting gap

    Full text link
    Single crystalline Tl2Ba2Ca2Cu3O10 was studied using electronic Raman scattering. The renormalization of the scattering continuum was investigated as a function of the scattering geometry to determine the superconducting energy gap 2Delta(k). The A1g- and B2g-symmetry component show a linear frequency behaviour of the scattering intensity with a peak related to the energy gap, while the B1g-symmetry component shows a characteristic behaviour at higher frequencies. The observed frequency dependencies are consistent with a dx^2-y^2-wave symmetry of the gap and yield a ratio of 2Delta/k_BT_c=7.4. With the polarization of the scattered and incident light either parallel or perpendicular to the CuO2-planes a strong anisotropy due to the layered structure was detected, which indicates an almost 2 dimensional behaviour of this system.Comment: 2 pages, Postscript-file including 2 figures. Accepted for publication in the Proceedings of the M^2SHTSC IV Conference, Grenoble (France), 5-9 July 1994. Proceedings to be published in Physica C. Contact address: [email protected]

    Collective Singlet Excitations and Evolution of Raman Spectral Weights in the 2D Spin Dimer Compound SrCu2(BO3)2

    Full text link
    We present a Raman light scattering study of the two-dimensional quantum spin system SrCu2(BO3)2 and show that the magnetic excitation spectrum has a rich structure, including several well-defined bound state modes at low temperature, and a scattering continuum and quasielastic light scattering contributions at high temperature. The key to the understanding of the unique features of SrCu2(BO3)2 is the presence of strong interactions between well-localized triplet excitations in the network of orthogonal spin dimers realized in this compound. Based on our analysis of the Heisenberg model relevant for this material, we argue that the collective excitations involving two and three-particle singlet bound states have large binding energies and are observed as well-defined peaks in the Raman spectrum.Comment: 5 pages, 2 figures. Revised version, to appear in Phys. Rev. Lett. (2000
    corecore