Single crystals of the optimally doped, moderately and strongly overdoped
high temperature superconductor Tl2Ba2CuO6+x (Tl-2201) with Tc=80, 56 and 30K,
respectively, have been investigated by polarized Raman scattering. By taking
the peak position of the B_1g component of electronic Raman scattering as
2Delta_0 we found that the reduced gap value (2Delta_0/k_BT_c) strongly
decreases with increasing doping. The behavior of the low frequency scattering
for the B_1g and B_2g scattering components is similar for optimally doped and
overdoped crystals and can be described by a w^3 - and w -law, respectively,
which is consistent with a d-wave symmetry of the order parameter. In contrast
to the optimally doped Tl-2201 in both, moderately and strongly overdoped
Tl-2201, the relative (compared to the B_1g) intensity of the A_1g scattering
component is suppressed. We suggest that the van Hove singularity is
responsible for the observed changes of Raman intensity and reduced gap value
with doping. Electronic Raman scattering in the normal state is discussed in
the context of the scattering from impurities and compared to the existing
infrared data. The scattering rate evaluated from the Raman measurements is
smaller for the overdoped samples, compared to the moderately overdoped
samples.Comment: 7 pages, 7 figure