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ABSTRACT. We study ergodicity of bounded, sub-additive and non-negatively homoge-
neous maps on finite dimensional spaces which we call upper transition operators. We
show that ergodicity coincides with the necessary and sufficient condition for a generalised
Perron-Frobenius theorem for upper transition operators. We show that ergodicity is equi-
valent with regular absorningness of the upper transition operator: there has to be a top class
that is regular and absorbing. Using this conditions, it can be shown that top class regularity
can be checked by solving a linear eigenvalue problem where the stochastic matrix is build
with the values of the upper transition operator for every atom. To check top class absorption
it is shown that less than n evaluations of the upper transition operator have to be done.

1. INTRODUCTION

Throughout the paper, X denotes a finite non-empty set of elements that we also refer
to as states, and L (X ) is the set of all real-valued maps on X . We provide the finite-
dimensional linear space L (X ) with the supremum norm ‖·‖

∞
, or with the topology of

uniform convergence, so the result is a Banach space. Observe that uniform convergence
and point-wise convergence coincide on this finite-dimensional space.

Definition 1. An upper transition operator on L (X ) is a transformation T: L (X )→
L (X ) that has the following properties:

(1) min f ≤ T f ≤max f T is bounded;
(2) T( f +g)≤ T f +Tg T is sub-additive;
(3) T(λ f ) = λTg T is non-negatively homogeneous;

for arbitrary f , g in L (X ) and real λ ≥ 0.

In this paper we will often refer to the work done on finite and discrete Markov chains.
At any timepoint k, these Markov chains can be described by a transition matrix M(k)

where the i-th row M(k)
i,· gives the probability distribution over the states at timepoint k+1

conditionally on the chain being in state xi at time k. If we now assume that these conditional
transition distributions can be picked from a set of probability distributions Mxi depending
on the state xi but with the restriction that each set has to be time-invariant and convex, then
any transition operator has to belong to

T :=
{

M ∈ R|X |×|X | : (∀xi ∈X )(Mi,· ∈Mxi)
}
.

It can be shown [1] that there corresponds exactly one upper transition operator T with T
such that the upper envelope of the expectation of a vector f ∈L (X ) after k steps can be
calculated as

max
{

M(1)
i,· M(2) . . .M(k) f : M( j) ∈T

}
= Tk f (xi).

As a result, TIA(x) can be interpreted as the upper transition probability and 1−TIAc(x) the
lower transition probability to go from state x in one step to a set of states A. In general,
an upper transition operator can be seen as the summarization of a set of non-stationary
Markov chains.
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Any upper transition operator T automatically also satisfies the following interesting
properties:

(T4) T( f +µ) = T f +µ T is constant-additive;
(T5) if f ≤ g then T f ≤ Tg T is order-preserving;
(T6) if fn→ f then T fn→ T f T is continuous;
(T7) T f +T(− f )≥ 0 T is upper–lower consistent;

for arbitrary f , g, fn in L (X ) and real µ . Clearly, for any n in the set of natural numbers
(with zero) N0, Tn is an upper transition operator as well.

Properties (T4) and (T5) define a topical map [4]. It is easy to see [4] that every topical
map is also non-expansive under the supremum norm:

(T8) ‖Tg−Tg‖
∞
≤ ‖ f −g‖

∞
T is non-expansive;

for every f and g in L (X ).
A very useful result for non-expansive maps by Sine [6] states that for every element f

of the finite-dimensional domain of a non-expansive transformation T, there is some natural
number p such that the sequence Tnp f converges. More importantly, Sine proves that we
can find a ‘period’ p common to all maps f in the domain L (X ). This means that for
any f , the set ωT( f ) of limit points of the set of iterates {Tn f : n ∈ N} has a number of
elements |ωT( f )| that divides p.1 T is cyclic on ωT( f ), with period |ωT( f )| (and therefore
also with period p). Lemmens and Scheutzow [4] managed to prove that an upper bound
for the common periods of all topical functions T: Rn→ Rn is

( n
bn/2c
)
. This upper bound is

tight in the sense that there is always at least one topical function that has this bound as its
smallest common period.

In Sec. 2 we introduce ergodicity and explain the link with Perron-Frobenius conditions.
The relationship between ergodicity and eigenvalues of the upper transition operator is also
exposed. In Sec. 3 we attempt to develop an algorithm that allows us the check for regularity
in practise. We start doing so by orderering the statespace by means of an accessibility
relation. From the classes that are induced by the ordering we will be able to formulate two
alternative conditions for ergodicity: top class regularity and top class absorption. In the
remainder of the section we will work out a test for every condition separately. Each of
these test will turn out to have a very nice complexity. In Sec. 4 we will explain the pros
and contras of the coefficient of ergodicity that has been defined by other authors.

2. PERRON-FROBENIUS CONDITION FOR UPPER TRANSITION OPERATORS

In this section we introduce the notion of ergodicity for upper transition operators. We
allow ourselves to be inspired by corresponding notions for non-stationary Markov chains [5,
p. 136] and Markov set chains [2], which leads us to the following definition.

Definition 2. An upper transition operator T on L (X ) is called ergodic if for all f ∈
L (X ), limn→∞ Tn f exists and is a constant function.

Consider any f ∈L (X ). Ergodicity of an upper transition operator T not only means
that the sequence Tn converges, so ωT( f ) is a singleton {ξ f }, but also that this limit ξ f

is a constant function. Observe that by (T6), ξ f is a fixed point for all Tk: T kξ f = ξ f and
therefore ξT k f = ξ f for all k ∈ N. If we denote the constant value of ξ f by E( f ), then
this defines a real functional E on L (X ). This functional is an upper expectation: it is
bounded, sub-additive and non-negatively homogeneous [compare with (T1)–(T3)]. This
upper expectation is T-invariant in the sense that E ◦T = E, and it is the only such upper
expectation.

1|A| denotes the cardinality of a set A and N is the set of natural numbers (without zero).
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Definition 3. An upper transition operator T on L (X ) is called Perron–Frobenius-like
if there is some real functional E∞ on L (X ) such that for all upper expectations E on
L (X ) and all f ∈L (X ):

lim
n→∞

E(Tn f ) = E∞( f ).

or in other words, if the sequence of upper expectations E ◦Tn converges to some limit that
does not depend on the initial value E.

As an immediate result, conditions for ergodicity of upper transition operators are
conditions for a Perron–Frobenius-like theorem for such transformations to hold.

Theorem 1 (Perron–Frobenius). An upper transition operator T is Perron–Frobenius-like
if and only if it is ergodic, and in that case E∞ = ET.

Proof. Sufficiency. Suppose T is ergodic. Then using the notations established above,
Tn f → ξ f and therefore E(Tn f )→ E(ξ f ) because any upper expectation E is continuous
[compare with (T6)]. Observe that, since any upper expectation E is constant-additive
[compare with (T4) and (T1)], E(ξ f ) = ET( f ). Hence E ◦Tn → ET, and therefore T is
Perron–Frobenius-like, with E∞ = ET.

Necessity. Suppose that T is Perron–Frobenius-like, with limit upper expectation E∞.
Fix any x ∈X , and consider the upper expectation Ex defined by Ex( f ) := f (x) for all
f ∈ L (X ). Then by assumption T n f (x) = Ex(Tn f )→ E∞( f ). Since this holds for all
x ∈X , we see that T is ergodic with ET = E∞. �

It follows from the discussion in Sec. 1 that
⋃

f∈L (X ) ωT( f ) is the set of all periodic
points of T—a periodic point being an element f ∈L (X ) for which there is some n ∈ N
for which Tn f = f . Because of (T4), this set containts all constant maps. We now see that
for T to be ergodic, this set cannot contain any other maps.

Proposition 2. An upper transition operator T is ergodic if and only if all of its periodic
points are constant maps.

3. ERGODICITY IN PRACTISE

We now turn to the issue of determining in actual practice whether an upper transition
operator is ergodic.

In the case of finite-state, discrete-time Markov chains, a nice approach to deciding
upon ergodicity is given by Kemeny and Snell [3, Sec. 1.4]. It is based on the notion of
an accessibility relation. This is a binary (weak order) relation on set of states X that
captures whether it is possible to go from one state to another in a finite number of steps. In
this section, we show that it is possible to associate an accessibility relation with an upper
transition operator, and that this relation provides us with an intuitive interpretation of the
notion of ergodicity in terms of accessibility. We refer to [1] for a detailed discussion of
accessibility relations and their connections with upper transition operators.

Definition 4. Consider an upper transition operator T on L (X ), and two states x and y in
X . We say that y is accessible from x in n steps, and denote this as x n→ y, if TnI{y}(x)> 0.
We say that state y is accessible from state x, and denote this as x→ y, if TnI{y}(x)> 0 for
some n ∈ N0. We say that x and y communicate, and denote this as x↔ y, if both x→ y and
y→ x.

The relation→ is a weak order (reflexive and transitive), and consequently↔ is an equival-
ence relation. The equivalence classes for this relation are called communication classes:
sets of X for which every element has access to any other element. The accessibility
relation induces a partial order on these communication classes.

In the case of finite-state, discrete-time Markov chains, this partial order gives us clues
about the ergodicity of the Markov chain. Indeed for such a Markov chain to be ergodic,
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it is necessary and sufficient that [1] it should be top class regular, meaning that: (i) there
should be only one maximal or undominated communication class—elements of a maximal
communication class have no access to states not in that class—, in which case we call this
unique maximal class R the top class; and (ii) the top class R should be regular, meaning
that after some time k, all elements of this class become accessible to each other in any
number of steps: for all x and y in R and for all n≥ k, x n→ y.

For upper transition operators, it turns out that top class regularity is a necessary condition
for ergodicity. However, top class regularity is by itself not a sufficient condition: we
need some garantee that the top class will eventually be reached—a requirement that is
automatically fulfilled in finite-state discrete-time Markov chains.

Proposition 3. An upper transition operator T is ergodic if and only if it is regularly
absorbing, meaning that it satisfies the following properties:
(TCR) it is top class regular:

R :=
{

x ∈X : (∃n ∈ N)(∀k ≥ n)minTkI{x} > 0
}
6= /0,

(TCA) it is top class absorbing: with Rc := X \R,

(∀y ∈Rc)(∃n ∈ N)TnIRc(y)< 1.

For a proof that (TCR) is equivalent to R 6= /0, we refer to [1, Prop. 4.3]. (TCA) means
that for every element y not in the top class, there is a strictly positive lower probability
1−TIRc(y) to access an element in the top class.

Proof. (TCR)∧ (TCA)⇒ (ER). Consider any fixed point ξ of Tk, where k ∈ N. We infer
from Prop. 2 that we have to show that ξ is constant. Using (T5), (T4) and (T3) we construct
from ξ ≥minξ +[ξ (x)−minξ ]I{x} the following inequality, which holds for all n ∈N and
all x ∈X :

Tnk
ξ ≥minξ +[ξ (x)−minξ ]TnkI{x}.

Hence, by taking the minimum on both sides of this inequality and using that Tnkξ = ξ , we
find that

0≥ [ξ (x)−minξ ]minTnkI{x}.

We infer from (TCR) that by taking n large enough, we can ensure that minTknI{x} > 0 if
x ∈R. So we already find that ξ (x) = minξ for all x ∈R.

If ξ reaches its maximum on R, then maxξ = minξ so ξ is indeed constant. Let us
therefore assume that the maximum of ξ is not reached in R. Using (T5), (T4) and (T3) we
construct from ξ ≤ maxξ − [maxξ −maxx∈R ξ (x)]IR and −IR = IRc −1 the following
inequality, which holds for all n ∈ N:

Tn
ξ ≤maxξ +

[
maxξ −max

x∈R
ξ (x)

]
(TnIRc −1).

By taking the maximum over Rc on both sides we get

0 = max
y∈Rc

Tn
ξ (y)−maxξ ≤

[
maxξ −max

x∈R
ξ (x)

](
max
y∈Rc

TnIRc(y)−1
)
.

If we choose n = max
{

ny : y ∈Rc,TnyIRc(y)< 1
}

then we see that for every y ∈Rc

TnIRc(y) = Tny [(IR + IRc)Tn−nyIRc ](y) = Tny [IRcTn−nyIRc ](y)≤ TnyIRc(y)< 1.

But this means that maxx∈Rc TnIRc(y)−1 < 0 and consequently

maxξ = max
x∈R

ξ = maxminξ = minξ .

(ER)⇒ (TCR)∧ (TCA). We will use contraposition and show first that ¬(TCR)⇒
¬(ER). Then we will show that ¬(TCA)∧ (TCR)⇒¬(ER).
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¬(TCR)⇒¬(ER). Not being top class regular means that R = /0, which is equivalent to

(∀x ∈X )(∀n ∈ N)(∃k ≥ n)(∃z ∈X )TkI{x}(z) = 0.

Since we infer from I{x}≥ 0 and (T1) that TkI{x}≥ 0, this implies that liminfn→∞ minTnI{x}=
0. But for any n ∈ N, Tn+1I{x} = T(TnI{x}) ≥ minTnI{x} by (T1), and therefore also
minTn+1I{x} ≥ minTnI{x}. This implies that the sequence minTnI{x} is non-decreasing,
and bounded above [by 1], and therefore convergent. This leads to the conclusion that

(∀x ∈X ) lim
n→∞

minTnI{x} = 0. (1)

We also infer from (T1) and (T2) that 1 = TkIX ≤ ∑x∈X TkI{x}. Since the cardinality |X |
of the state space is finite, this means that for all z ∈X and all n ∈ N there is some x ∈X
such that TnI{x}(z)≥ 1/|X |. This tells us that maxTnI{x} ≥ 1/|X |. Since we can infer from a
similar argument as before that the sequence maxTnI{x} converges, this tells us that

(∀x ∈X ) lim
n→∞

maxTnI{x} ≥
1
|X |

. (2)

Combining Eqs. (1) and (2) tells us that limn→∞(maxTnI{x}−minTnI{x})> 0, so T cannot
be ergodic.
¬(TCA)∧ (TCR)⇒¬(ER). Since T is not top class absorbing, we know that there is

some y ∈Rc such that TnIRc(y) = 1 for all n ∈ N. As the top class R is non-empty, we
know that there is some x ∈R, and this x has no access to any state outside the maximal
communication class R: TnIRc(x) = 0 for all n ∈ N. Consequently

lim
n→∞

(maxTnIRc −minTnIRc) = 1−0 > 0,

so T cannot be ergodic. �

3.1. Checking top class regularity. Checking for top class regularity directly using the
definition would involve calculating for every state x the maps TI{x}, T2I{x}, . . . , TnI{x}
until a first number n = nx is found for which minTnxI{x} > 0. Unfortunately, it is not clear
whether this procedure is guaranteed to terminate after a certain number of iterations, or
whether we can stop checking after a fixed number of iterations. In this section, we want to
take a closer look at this problem.

The next proposition shows that all the information we need in order to check top class
regularity is incorporated in a single application of T to the atoms of X .

Proposition 4. Let T be an upper transition operator on L (X ), n ∈ N and x,y ∈X .
Then TnI{y}(x)> 0 if and only if there is some sequence x0, x1, x2, . . . , xn−1, xn in X with
x0 = x and xn = y such that TI{xk+1}(xk)> 0 for all k ∈ {0,1, . . . ,n−1}.

Proof. Sufficiency. Fix k and ` in N, and u and v in X . Since T`I{y}=∑z∈X I{z}T`I{y}(z)≥
I{v}T`I{y}(v), it follows from (T5), (T2) and (T3) that Tk+`I{y} ≥ TkI{v}T`I{y}(v) and
therefore Tk+`I{y}(x)≥ TkI{v}(x)T`I{y}(v). Applying this inequality repeatedly, we get:

TnI{y}(x)≥
n−1

∏
k=0

TI{xk+1}(xk)

for any sequence x0, x1, x2, . . . , xn−1, xn in X with x0 = x and xn = y. It follows that the
left-hand side is positive as soon as all factors on the right-hand side are.

Necessity. We infer using (T2) and (T3) that

TnI{y}(x) = T
(

∑
x1∈X

I{x1}T
n−1I{y}(x1)

)
(x)≤ ∑

x1∈X
Tn−1I{y}(x1)TI{x1}(x),
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and repeating the same argument recursively leads to

TnI{y}(x)≤ ∑
x0,x1,...,xn−1,xn∈X

x0=x,xn=y

n−1

∏
k=0

TI{xk+1}(xk).

Since all the factors (and therefore all terms) on the right-hand side are non-negative by (T1)
and (T5), the positivity of the left-hand side implies that there must be at least one positive
term on the right-hand side, all of whose factors must therefore be positive. �

This proposition not only implies that the set
{

TI{x} : x ∈X
}

completely determines the
accessibility relation→, but also that it determines the ‘accessibility in n steps’ relation n→.
In other words, not only the communication and maximal classes can be determined from
{TIx : x ∈X }, but also their regularity.

Definition 5. A stochastic matrix M ∈ RX ×X represents an upper transition operator T
on L (X ) if it has the following form:

Mx,y :=

{
cx,y if TI{y}(x)> 0,
0 if TI{y}(x) = 0,

with cx,y > 0 and ∑y∈X cx,y = 1.

If a stochastic matrix M represents T then we know that Mx,y > 0 if and only if TI{y}(x). We
gather from Prop. 4 that accessibility in n steps is completely determined by {TIx : x ∈X },
so we may conclude that the finite-state, discrete-time Markov chain with matrix M and the
upper transition operator T will invoke exactly the same ‘accessibility in n steps’ relations
n→. This means that they will have the same communication classes, the same maximal

classes and the same regular class. This makes it possible to use the entire machinery
of finite-state, discrete-time Markov chains to decide upon top class regularity for upper
transition operators. We are led to the following immediate conclusion [2, theorem 1.7].

Proposition 5 (Top class regularity). Consider an upper transition operator T and any
stochastic matrix M that represents it. Then the following statements are equivalent: (i) T is
top class regular; (ii) M is regular; and (iii) M has exactly one eigenvalue with modulus 1.

Clearly this single eigenvalue with modulus 1 has to be 1 itself because M is a stochastic
matrix. The problem corresponds to checking whether there exists φ ∈ R such that

det(e jφ I−M)

e jφ −1
= 0

with I the identity matrix and j2 =−1.

Example 1. Let X := {x,y} and T f := f (x)I{x}+max{ f (x), f (y)}I{y} for all f ∈L (X ).

Then TI{x} = IX and TI{y} = I{y}. This means that the stochastic matrix M =
(

1 0
1/2 1/2

)
represents T. Since M has eigenvalues 1 and 1/2, we conclude that T is top class regular.

3.2. Checking for top class absorption. We now present a computationally cheap pro-
cedure to check for top class absorption.

Proposition 6 (Top class absorption). Let T be an upper transition operator with regular
top class R. Consider the nested sequence of subsets of Rc defined by the iterative scheme:

A0 := Rc

An+1 := {a ∈ An : TIAn(a) = 1} , n≥ 0.

Then T is not top class absorbing if there is some n≥ 0 for which An = An+1 6= /0. If on the
other hand An = /0 for some n≥ 0 then T is top class absorbing. In any case the conclusion
will be reached in at most |Rc| iterations.
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Proof. We start by showing inductively that under the given assumptions, the statement

Hn : IAnTnIRc = IAn and (∀a ∈ Ac
n+1)TIAn(a)< 1 and (∀a ∈ Ac

n)T
nIRc(a)< 1

holds for all n ≥ 0. We first prove that the state Hn holds for n = 0. The first and third
statemenst of H0 hold trivially. For the second statement, we have to prove that TIA0(a)< 1
for all a ∈ Ac

1 = Ac
0 ∪A0 \A1. On A0 \A1, the desired inequality holds by definition. On

Ac
0 = R it holds because there TIA0 is zero: no state in the top class R has access to any

state outside it.
Next, we prove that Hn⇒ Hn+1. First of all,

Tn+1IA0 = T(TnIA0) = T[IAnTnIA0 + IAc
nTnIA0 ] = T[IAn + IAc

nTnIA0 ], (3)

where the last equality follows from the induction hypothesis Hn. It follows from the
definition of An+1 that IAn+1TIAn = IAn+1 , and therefore

IAn+1 = IAn+1T[IAn + IAc
nTnIA0 − IAc

nTnIA0 ]≤ IAn+1T[IAn + IAc
nTnIA0 ]+ IAn+1T[−IAc

nTnIA0 ]

= IAn+1Tn+1IA0 + IAn+1T[−IAc
nTnIA0 ]

≤ IAn+1Tn+1IA0 ≤ IAn+1 ,

where the first inequality follows from (T2), the second from the fact that −IAc
nTnIA0 ≤ 0

and therefore IAn+1T[−IAc
nTnIA0 ]≤ 0 [use (T1) and (T5)], and the third from Tn+1IA0 ≤ 1

[use (T5)]. The second equality follows from Eq. (3). Hence indeed IAn+1 = IAn+1Tn+1IA0 .
Next, observe that Ac

n+2 = Ac
n+1 ∪ An+1 \ An+2. By definition, TIAn+1(a) < 1 for all

a ∈ An+1 \An+2. It also follows from the induction hypothesis Hn that TIAn(a)< 1 for all
a ∈ Ac

n+1. But since An+1 ⊆ An, it follows from (T5) that TIAn+1 ≤ TIAn , and therefore also
TIAn+1(a)< 1 for all a ∈ Ac

n+1. Hence indeed TIAn+1(a)< 1 for all a ∈ Ac
n+2.

To finish the induction proof, let β := maxb∈Ac
n TnIRc(a), then β < 1 by the induction

hypothesis Hn. Since IAc
0
TnIA0 = IRTnIRc = 0 [because no element in the maximal class

R has access to any element outside it], we infer from Eq. (3) that

Tn+1IA0 = T[IAn + IAc
nTnIA0 ]≤ T[IAn +β IAc

n ] = T[β +(1−β )IAn ]≤ β +(1−β )TIAn .

Consider any a ∈ Ac
n+1, then by definition TIAn(a)< 1 by the induction hypothesis Hn, and

therefore Tn+1IA0(a)≤ β +(1−β )TIAn(a)< 1 since also β < 1. We conclude that Hn+1
holds too.

To continue the proof, we observe that A0, A1, . . . , An, . . . is a non-increasing sequence,
and that A0 is finite. This implies that there must be some first k ∈ N such that Ak+1 = Ak.
Clearly, k ≤ |A0|. We now prove by induction that Gn : IAk Tn+kIA0 = IAk for all n≥ 0. The
statement Gn clearly holds for n = 0. We show that Gn⇒ Gn+1. First of all,

Tn+k+1IA0 = T(Tn+kIA0) = T[IAk Tn+kIA0 + IAc
k
Tn+kIA0 ] = T[IAk + IAc

k
Tn+kIA0 ],

where the last equality follows from the induction hypothesis Gn. As before, it follows from
the definition of Ak+1 that IAk+1TIAk = IAk+1 , and therefore IAk TIAk = IAk , so

IAk = IAk T[IAk + IAc
k
Tn+kIA0 − IAc

k
Tn+kIA0 ]≤ IAk T[IAnk + IAc

k
Tn+kIA0 ]+ IAk T[−IAc

k
Tn+kIA0 ]

= IAk Tn+k+1IA0 + IAk T[−IAc
k
Tn+kIA0 ]

≤ IAk Tn+k+1IA0 ≤ IAk ,

where the first inequality follows from (T2), the second from the fact that −IAc
k
Tn+kIA0 ≤ 0

and therefore IAk T[−IAc
k
Tn+kIA0 ]≤ 0 [use (T1) and (T5)], and the third from Tn+k+1IA0 ≤ 1

[use (T5)]. Hence indeed IAk = IAk Tn+k+1IA0 .
There are now two possibilities. The first is that Ak 6= /0. It follows from the arguments

above that for any element a of Ak, T`IRc(a) = 1 for all ` ∈ N, which implies that T cannot
be top class absorbing. The second possibility is that Ak = /0. It follows from the argument
above that TkIRc(a)< 1 for all a∈ Ac

k =X which implies that T is top class absorbing. �
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Example 2. Define T f = max{M f : L≤M ≤U,MIX = IX } where L and U are given by

L =


1 0 0 0 0
0 1/4 1/4 0 0

1/2 1/4 0 0 0
0 0 0 0 0
0 1/2 0 0 1/4

 , U =


1 0 0 0 0

1/2 3/4 1/2 0 0
3/4 1/2 0 0 0
1 0 0 1 1

1/4 3/4 0 0 1/4

 .

In this particular case, any representing matrix’ non zero elements correspond to those of U .
For example

M =


1 0 0 0 0

1/3 1/3 1/3 0 0
1/2 1/2 0 0 0
1/3 0 0 1/3 1/3
1/3 1/3 0 0 1/3

 .

The characteric function of M is

χM(s) = (s−1)(s− 1/3)2(s− (1+
√

7)/6)(s− (1−
√

7)/6)

whence T is top class regular and from the form of M it can be seen immediately that the
first element of the state vector is absorbing which implies that IR =

(
1 0 0 0 0

)T .
To check for top class absorbingness, we start iterating:

(itr 1) TIRc =
(
0 1 1/2 1 1

)T whence IA1 =
(
0 1 0 1 1

)T ,
(itr 2) TIA1 =

(
0 3/4 1/2 1 1

)T whence IA2 =
(
0 0 0 1 1

)T ,
(itr 3) TIA2 =

(
0 0 0 1 1/4

)T whence IA3 =
(
0 0 0 1 0

)T ,
(itr 4) TIA3 =

(
0 0 0 1 0

)T whence IA4 =
(
0 0 0 1 0

)T .
Because A4 = A3 6= /0 we conclude that T is not top class absorbing and therefore not
ergodic.

4. COEFFICIENT OF ERGODICITY

It is clear that ergodicity would follow immediately from Banach’s fixed point theorem
if T were contractive instead of non-expansive. With this in mind, one might think that
conditions for ergodicity might coincide with contractiveness of T. This is not true as the
next example shows.

Example 3. Consider the upper transition operator T = IX max. Since TkI{x} = IX for all
x ∈X and all k ∈N, we find that R =

{
x ∈X : (∃n ∈ N)(∀k ≥ n)minTkI{x} > 0

}
= X ,

so T is both top class regular [because R 6= /0] and top class absorbing [trivially because
Rc = /0], and therefore ergodic by Prop. 3. But T is non-expansive and not contractive, since
‖T f‖

∞
= |max f | ≤max | f |= ‖ f‖

∞
, and therefore ‖T f‖

∞
= ‖ f‖

∞
if f ≥ 0.

Also, we should not aim for the uniqueness of the fixed point as we know that all constant
functions on L (X ) are fixed points. Under slight modifications, the reasoning developed
in the contraction mapping theorem can still be used however. In the first stage, it is proven
that ∥∥∥Tk+1 f −Tk f

∥∥∥
∞

≤ α f qk, (4)

with α f a constant depending on f and 0≤ q < 1. Subsequently, equation 5 is used to show
that {Tn f} is a Cauchy sequence and because of the compactness and hence completeness
of the space it is concluded that limk→∞ Tk f exists and we will denote it T∞ f . Clearly also
T∞ f is a fixed point of T. By using exactly the same reasoning as used to prove equation 5
plus the fact that T∞Tk f = T∞ f it follows that∥∥∥Tk f −T∞ f

∥∥∥
∞

≤ β f qk. (5)
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If we are looking for ergodicity then we do not only want the sequence {Tk f} to converge,
but also that maxT∞ f = minT∞ f . To join this requirement with the contraction assumption,
Škulj and Hable introduced the coefficient of ergodicity [7] which they defined as

ρ(T) := max
0≤ f≤1

(maxT f −minT f ) .

By doing so, the next proposition –which is very similar to the first step in the contraction
theorem– can be shown.

Proposition 7. If there exist n ∈ N such that ρ(Tn)< 1 then the next inequality holds for
k ≥ n: ∥∥∥Tk+1 f −Tk f

∥∥∥
∞

≤ αqk,

where q := ρ(Tn)1/n and α := ρ(Tn)−1(max f −min f )max0≤g≤1 ‖g−Tg‖
∞

.

Proof. We decompose k = qn+ r where r is the remainder when dividing k by n. Because
T∞ is T-invariant ∥∥∥Tk+1 f −Tk f

∥∥∥
∞

=
∥∥Tnq+r+1 f −Tnq+r f

∥∥
∞
,

≤
∥∥Tnq+1 f −Tnq f

∥∥
∞
,

where the last step is a result from (T8). If we define f̃ := Tnq f−minTnq f
maxTnq f−minTnq f then we see that∥∥Tnq+1 f −Tnq f

∥∥
∞
=(maxTnq f −minTnq f )

∥∥Tnq+1 f̃ −Tnq f̃
∥∥

∞
,

≤maxTnq f −minTnq f
max f −min f

(max f −min f )
∥∥T f̃ − f̃

∥∥
∞
,

≤ρ(Tnq)(max f −min f ) max
0≤g≤1

‖Tg−g‖
∞
.

Here we used the positive homogeneity of ‖·‖
∞

, the non-expansiveness of T and the fact
that maxTnq f −minTnq f ≤max f −min f .

A close examination of the coefficient of ergodicity shows us that

ρ(Tnq) = max
0≤ f≤1

(
maxT[Tn(q−1) f −minTn(q−1) f ]−minT[Tn(q−1) f −minTn(q−1) f ]

)
,

≤ max
0≤ f≤1

[Tn(q−1) f −minTn(q−1) f ] max
0≤g≤1

(maxTng−minTng) ,

≤ max
0≤ f≤1

[maxTn(q−1) f −minTn(q−1) f ] max
0≤g≤1

(maxTng−minTng) ,

= ρ(Tn(q−1))ρ(Tn),

which we can use as the inductive step to show that ρ(Tnq)≤ ρ(Tn)q. To conclude the proof
we notice that

ρ(Tnq)≤ ρ(Tn)q = ρ(Tn)
1
n nq = ρ(Tn)−

r
n ρ(Tn)

1
n (nq+r) ≤ ρ(Tn)−1

ρ(Tn)
1
n k

�

From the last line of the proof it follows moreover that if there exists n such that
ρ(Tn)< 1 then limk→∞ ρ(Tk) = 0 which means that maxT∞ f −minT∞ f = 0 and thus that
T must be ergodic.

As explained before, the previous proposition can be used to say something about
the speed of convergence or in other words that all fixed points are constant functions.
Consequently, ρ(Tn) < 1 is a sufficient condition for ergodicity. Similar to the previous
proof and using T∞T = TT∞ = T∞ we get the speed of convergence result.

Proposition 8. l If there exist n ∈N such that ρ(Tn)< 1 then T is ergodic and for all k≥ n∥∥∥Tk f −T∞ f
∥∥∥

∞

≤ βqk,
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where q := ρ(Tn)1/n and β := ρ(Tn)−1(max f −min f )max0≤g≤1 ‖g−T∞g‖
∞

.

5. CONCLUSION

In this paper we gave different conditions under which an upper transition operator
–which corresponds to a set of non-stationary Markov chains– is ergodic. We showed that
ergodicity is completely determined by the eigenvalues and functions of the transition
operator as is the case in classical Markov chains which opens the door to a spectral
theorem for upper transition operators. Unfortunately, it is not known how to calculate these
eigenvalues which is why we developed an alternative test for ergodicity which needs at
most 2|X |−1 evaluations of the upper transition operator. The algorithm consists of two
steps in which the first step checks for top class regularity which is done by building a
representing stochastic matrix and solving a linear eigenvalue problem and a second step
which checks for top class absorption.

Another approach that has been documented in the literature calculates the coefficient of
ergodicity and checks whether there exists a power of the transition operators such that this
coefficient becomes strictly smaller than zero. Because calculating this coefficient involves
an optimization problem over an hypercube of the space and because it is not known whether
there exists a maximal power till which the coefficient needs to be checked, the coefficient
of ergodicity is merely a theoretical measure. Interesting about the coefficient of ergodicity
however is that it gives an upper bound on the speed of convergence.

What has not been investigated yet are the conditions under which {Tn f} will converge
in general. Extrapolating from the conditions for convergence given in this paper, one
might conjecture that there is convergence if and only if all classes that are not regular are
absorbed by a union of classes that are regular. Also worth investigating is whether there
are possibilities to get stochastic matrices that are representing the upper transition operator
in a quantitative way rather than in a qualitative way as the ones we defined. These matrices
could then for example be used to make statements about the rate of convergence from
individual elements to the absorbing class.
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