14 research outputs found

    Evolutionary Mechanisms of Long-Term Genome Diversification Associated With Niche Partitioning in Marine Picocyanobacteria.

    Full text link
    Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most abundant photosynthetic organisms on Earth, an ecological success thought to be linked to the differential partitioning of distinct ecotypes into specific ecological niches. However, the underlying processes that governed the diversification of these microorganisms and the appearance of niche-related phenotypic traits are just starting to be elucidated. Here, by comparing 81 genomes, including 34 new Synechococcus, we explored the evolutionary processes that shaped the genomic diversity of picocyanobacteria. Time-calibration of a core-protein tree showed that gene gain/loss occurred at an unexpectedly low rate between the different lineages, with for instance 5.6 genes gained per million years (My) for the major Synechococcus lineage (sub-cluster 5.1), among which only 0.71/My have been fixed in the long term. Gene content comparisons revealed a number of candidates involved in nutrient adaptation, a large proportion of which are located in genomic islands shared between either closely or more distantly related strains, as identified using an original network construction approach. Interestingly, strains representative of the different ecotypes co-occurring in phosphorus-depleted waters (Synechococcus clades III, WPC1, and sub-cluster 5.3) were shown to display different adaptation strategies to this limitation. In contrast, we found few genes potentially involved in adaptation to temperature when comparing cold and warm thermotypes. Indeed, comparison of core protein sequences highlighted variants specific to cold thermotypes, notably involved in carotenoid biosynthesis and the oxidative stress response, revealing that long-term adaptation to thermal niches relies on amino acid substitutions rather than on gene content variation. Altogether, this study not only deciphers the respective roles of gene gains/losses and sequence variation but also uncovers numerous gene candidates likely involved in niche partitioning of two key members of the marine phytoplankton

    Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed bifurcaria bifurcata

    Get PDF
    The global redistribution of biodiversity will intensify in the coming decades of climate change, making projections of species range shifts and of associated genetic losses important components of conservation planning. Highly-structured marine species, notably brown seaweeds, often harbor unique genetic variation at warmer low-latitude rear edges and thus are of particular concern. Here, a combination of Ecological Niche Models (ENMs) and molecular data is used to forecast the potential near-future impacts of climate change for a warm-temperate, canopy forming seaweed, Bifurcaria bifurcata. ENMs for B. bifurcata were developed using marine and terrestrial climatic variables, and its range projected for 2040-50 and 2090-2100 under two greenhouse emission scenarios. Geographical patterns of genetic diversity were assessed by screening 18 populations spawning the entire distribution for two organelle genes and 6 microsatellite markers. The southern limit of B. bifurcata was predicted to shift northwards to central Morocco by the mid-century. By 2090-2100, depending on the emission scenario, it could either retreat further north to western Iberia or be relocated back to Western Sahara. At the opposing margin, B. bifurcata was predicted to expand its range to Scotland or even Norway. Microsatellite diversity and endemism were highest in Morocco, where a unique and very restricted lineage was also identified. Our results imply that B. bifurcata will maintain a relatively broad latitudinal distribution. Although its persistence is not threatened, the predicted extirpation of a unique southern lineage or even the entire Moroccan diversity hotspot will erase a rich evolutionary legacy and shrink global diversity to current (low) European levels. NW Africa and similarly understudied southern regions should receive added attention if expected range changes and diversity loss of warm-temperate species is not to occur unnoticed.Portuguese FCT (Fundacao para a Ciencia e a Tecnologia) [PTDC/AAC-CLI/109108/2008, EXPL/BIA-BIC/1471/2012, EXCL/AAG-GLO/0661/2012]; [SFRH/BPD/88935/2012]info:eu-repo/semantics/publishedVersio

    Chloroplast genomes as a tool to resolve red algal phylogenies: a case study in the Nemaliales

    Get PDF
    Obtaining strongly supported phylogenies that permit confident taxonomic and evolutionary interpretations has been a challenge in algal biology. High-throughput sequencing has improved the capacity to generate data and yields more informative datasets. We sequenced and analysed the chloroplast genomes of 22 species of the order Nemaliales as a case study in the use of phylogenomics as an approach to achieve well-supported phylogenies of red algae.Australian Research Council/[FT110100585]/ARC/AustraliaAustralian Biological Resources Study/[RFL213-08]/ABRS/AustraliaMillennium Scientific Initiative/[NC120030]/MSI/Nueva JerseyUniversity of Melbourne///AustraliaUCR::VicerrectorĂ­a de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de InvestigaciĂłn en Ciencias del Mar y LimnologĂ­a (CIMAR

    Community-Driven Data Analysis Training for Biology

    Get PDF
    The primary problem with the explosion of biomedical datasets is not the data, not computational resources, and not the required storage space, but the general lack of trained and skilled researchers to manipulate and analyze these data. Eliminating this problem requires development of comprehensive educational resources. Here we present a community-driven framework that enables modern, interactive teaching of data analytics in life sciences and facilitates the development of training materials. The key feature of our system is that it is not a static but a continuously improved collection of tutorials. By coupling tutorials with a web-based analysis framework, biomedical researchers can learn by performing computation themselves through a web browser without the need to install software or search for example datasets. Our ultimate goal is to expand the breadth of training materials to include fundamental statistical and data science topics and to precipitate a complete re-engineering of undergraduate and graduate curricula in life sciences. This project is accessible at https://training.galaxyproject.org. We developed an infrastructure that facilitates data analysis training in life sciences. It is an interactive learning platform tuned for current types of data and research problems. Importantly, it provides a means for community-wide content creation and maintenance and, finally, enables trainers and trainees to use the tutorials in a variety of situations, such as those where reliable Internet access is unavailable

    Cyanorak v2.1: a scalable information system dedicated to the visualization and expert curation of marine and brackish picocyanobacteria genomes.

    No full text
    Cyanorak v2.1 (http://www.sb-roscoff.fr/cyanorak) is an information system dedicated to visualizing, comparing and curating the genomes of Prochlorococcus, Synechococcus and Cyanobium, the most abundant photosynthetic microorganisms on Earth. The database encompasses sequences from 97 genomes, covering most of the wide genetic diversity known so far within these groups, and which were split into 25,834 clusters of likely orthologous groups (CLOGs). The user interface gives access to genomic characteristics, accession numbers as well as an interactive map showing strain isolation sites. The main entry to the database is through search for a term (gene name, product, etc.), resulting in a list of CLOGs and individual genes. Each CLOG benefits from a rich functional annotation including EggNOG, EC/K numbers, GO terms, TIGR Roles, custom-designed Cyanorak Roles as well as several protein motif predictions. Cyanorak also displays a phyletic profile, indicating the genotype and pigment type for each CLOG, and a genome viewer (Jbrowse) to visualize additional data on each genome such as predicted operons, genomic islands or transcriptomic data, when available. This information system also includes a BLAST search tool, comparative genomic context as well as various data export options. Altogether, Cyanorak v2.1 constitutes an invaluable, scalable tool for comparative genomics of ecologically relevant marine microorganisms

    The future of metabolomics in ELIXIR.

    No full text
    Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the "Future of metabolomics in ELIXIR" was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases
    corecore