1,128 research outputs found

    The value-added of primary schools: what is it really measuring?

    Get PDF
    This paper compares the official value-added scores in 2005 for all primary schools in three adjacent LEAs in England with the raw-score Key Stage 2 results for the same schools. The correlation coefficient for the raw- and value-added scores of these 457 schools is around +0.75. Scatterplots show that there are no low attaining schools with average or higher value-added, and no high attaining schools with below average value-added. At least some of the remaining scatter is explained by the small size of some schools. Although some relationship between these measures is to be expected – so that schools adding considerable value would tend to have high examination outcome scores – the relationship shown is too strong for this explanation to be considered sufficient. Value-added analysis is intended to remove the link between a schools’ intake scores and their raw-score outcomes at KS2. It should lead to an estimate of the differential progress made by pupils, assessed between schools. In fact, however, the relationship between value-added and raw scores is of the same size as the original relationship between intake scores and raw-scores that the value-added is intended to overcome. Therefore, however appealing the calculation of value-added figures is, their development is still at the stage where they are not ready to move from being a research tool to an instrument of judgement on schools. Such figures may mislead parents, governors and teachers and, even more importantly, they are being used in England by OFSTED to pre-determine the results of school inspections

    Public-Interest Benefit Evaluation of Partial- Upgrading Technology

    Get PDF
    Approximately 60 per cent of Alberta’s oil sands production is non-upgraded bitumen which, after being mixed with a diluting agent (diluent) to allow transport, is exported. A popular view within Alberta — and particularly among Albertan politicians — is that a much larger share of oil sands bitumen should be upgraded in the province. However, without public subsidies or government underwriting, it is uneconomic to build and operate new facilities in Alberta to fully upgrade the bitumen into synthetic crude oil. But there are new partial upgrading technologies being developed that, subject to successful testing at a larger (commercial) pilot scale, can prove to be not only economic in Alberta, but also generate large social and economic benefits for the province. The advantages include a much smaller capital investment, a significant increase in the value of the product and market for the product and, even more importantly, a dramatic reduction in the need for large amounts of expensive diluent to transport the product to market. Indeed, the only diluent required will be that to move the bitumen from the production site to the partial upgrader and this can be continually recycled. The market for the synthetic crude oil produced by full upgrading is only getting tougher. Any Alberta bitumen fully upgraded here would compete closely with the rapidly expanding supply of light U.S. unconventional oil. Partial upgrading does not upgrade bitumen to a light crude, but to something resembling more of a medium or heavy crude, and at a lower cost per barrel than full upgrading. Unlike in the increasingly crowded light-crude market, the Alberta Royalty Review Advisory Panel recognized that currently there are gaps in several North American refineries that could be filled by this partially upgraded Alberta oil. A partial upgrader serving that less-competitive market not only appears to hold the potential for investors to make attractive returns in the long term, it would also provide important benefits to Alberta from a social perspective. Since partially upgraded crude can be shipped via pipeline without diluent (as bitumen requires), producing it in Alberta would free up pipeline capacity otherwise tied up by current volumes of diluted bitumen or dilbit (diluent typically represents about one-third of each barrel of dilbit). It also reduces the cost to shippers of paying tolls for diluent exported in the dilbit and recovering diluent at the U.S. pipeline terminal, where it is less valuable than if it were recovered in Alberta at the partial upgrader. The value of each barrel produced would also be higher, benefitting oil sands producers. Partial upgrading also seems to promise a lower emissions-intensity profile compared to other bitumen-processing technologies. Based on the model of a single 100,000-barrel-a-day partial upgrader, the value uplift could be 10to10 to 15 per bitumen barrel. Meanwhile, there could be an average annual increase to Alberta’s GDP of 505million,andasmanyas179,000personyearsofemploymentcreated(assuminga40.5yearoperatingperiod).Theincreaseintaxableearningswouldincreaseprovincialrevenuesbyanaverageof505 million, and as many as 179,000 person-years of employment created (assuming a 40.5-year operating period). The increase in taxable earnings would increase provincial revenues by an average of 60 million a year, not including additional federal tax revenues. If successful, there would be many such partial upgraders with corresponding multiplication of these benefits. But there remains the critical task of proving partial upgrading technology at a higher scale than current testing. This might also depend on the province helping sustain investors through the “death-valley” between successful research and initial testing and demonstration of full commercial viability. The province has stepped into help technologies cross that “death valley” before. The promise of partial upgrading may well justify, as manager and steward of Alberta’s resources, helping bridge that valley again

    Uranium(III) coordination chemistry and oxidation in a flexible small-cavity macrocycle

    Get PDF
    U(III) complexes of the conformationally flexible, small-cavity macrocycle trans-calix[2]benzene[2]pyrrolide (L)2–, [U(L)X] (X = O-2,6-tBu2C6H3, N(SiMe3)2), have been synthesized from [U(L)BH4] and structurally characterized. These complexes show binding of the U(III) center in the bis(arene) pocket of the macrocycle, which flexes to accommodate the increase in the steric bulk of X, resulting in long U–X bonds to the ancillary ligands. Oxidation to the cationic U(IV) complex [U(L)X][B(C6F5)4] (X = BH4) results in ligand rearrangement to bind the smaller, harder cation in the bis(pyrrolide) pocket, in a conformation that has not been previously observed for (L)2–, with X located between the two ligand arene rings

    Depolarization of sperm membrane potential is a common feature of men with subfertility and is associated with low fertilization rate at IVF

    Get PDF
    STUDY QUESTION. Are significant abnormalities in outward (K+) conductance and resting membrane potential (Vm) present in the spermatozoa of patients undertaking IVF and ICSI and if so, what is their functional effect on fertilization success? SUMMARY ANSWER. Negligible outward conductance (≈5% of patients) or an enhanced inward conductance (≈4% of patients), both of which caused depolarization of Vm, were associated with a low rate of fertilization following IVF. WHAT IS KNOWN ALREADY. Sperm-specific potassium channel knockout mice are infertile with defects in sperm function, suggesting that these channels are essential for fertility. These observations suggest that malfunction of K+ channels in human spermatozoa might contribute significantly to the occurrence of subfertility in men. However, remarkably little is known of the nature of K+ channels in human spermatozoa or the incidence and functional consequences of K+ channel defects. STUDY DESIGN, SIZE AND DURATION. Spermatozoa were obtained from healthy volunteer research donors and subfertile IVF and ICSI patients attending a hospital assisted reproductive techniques clinic between May 2013 and December 2015. In total, 40 IVF patients, 41 ICSI patients and 26 normozoospermic donors took part in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS. Samples were examined using electrophysiology (whole-cell patch clamping). Where abnormal electrophysiological characteristics were identified, spermatozoa were further examined for Ca2+ influx induced by progesterone and penetration into viscous media if sufficient sample was available. Full exome sequencing was performed to specifically evaluate potassium calcium-activated channel subfamily M α 1 (KCNMA1), potassium calcium-activated channel subfamily U member 1 (KCNU1) and leucine-rich repeat containing 52 (LRRC52) genes and others associated with K+ signalling. In IVF patients, comparison with fertilization rates was done to assess the functional significance of the electrophysiological abnormalities. MAIN RESULTS AND THE ROLE OF CHANCE. Patch clamp electrophysiology was used to assess outward (K+) conductance and resting membrane potential (Vm) and signalling/motility assays were used to assess functional characteristics of sperm from IVF and ICSI patient samples. The mean Vm and outward membrane conductance in sperm from IVF and ICSI patients were not significantly different from those of control (donor) sperm prepared under the same conditions, but variation between individuals was significantly greater (P< 0.02) with a large number of outliers (>25%). In particular, in ≈10% of patients (7/81), we observed either a negligible outward conductance (4 patients) or an enhanced inward current (3 patients), both of which caused depolarization of Vm. Analysis of clinical data from the IVF patients showed significant association of depolarized Vm (≥0 mV) with low fertilization rate (P= 0.012). Spermatozoa with electrophysiological abnormities (conductance and Vm) responded normally to progesterone with elevation of [Ca2+]i and penetration of viscous medium, indicating retention of cation channel of sperm (CatSper) channel function. LIMITATIONS, REASONS FOR CAUTION. For practical, technical, ethical and logistical reasons, we could not obtain sufficient additional semen samples from men with conductance abnormalities to establish the cause of the conductance defects. Full exome sequencing was only available in two men with conductance defects. WIDER IMPLICATIONS OF THE FINDINGS. These data add significantly to the understanding of the role of ion channels in human sperm function and its impact on male fertility. Impaired potassium channel conductance (Gm) and/or Vm regulation is both common and complex in human spermatozoa and importantly is associated with impaired fertilization capacity when the Vm of cells is completely depolarized

    Causal mechanisms in the clinical course and treatment of back pain

    Get PDF
    In recent years, there has been increasing interest in studying causal mechanisms in the development and treatment of back pain. The aim of this article is to provide an overview of our current understanding of causal mechanisms in the field. In the first section, we introduce key concepts and terminology. In the second section, we provide a brief synopsis of systematic reviews of mechanism studies relevant to the clinical course and treatment of back pain. In the third section, we reflect on the findings of our review to explain how understanding causal mechanisms can inform clinical practice and the implementation of best practice. In the final sections, we introduce contemporary methodological advances, highlight the key assumptions of these methods, and discuss future directions to advance the quality of mechanism-related studies in the back pain field

    Sensitivity and performance of the Advanced LIGO detectors in the third observing run

    Get PDF
    On April 1st, 2019, the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO), joined by the Advanced Virgo detector, began the third observing run, a year-long dedicated search for gravitational radiation. The LIGO detectors have achieved a higher duty cycle and greater sensitivity to gravitational waves than ever before, with LIGO Hanford achieving angle-averaged sensitivity to binary neutron star coalescences to a distance of 111 Mpc, and LIGO Livingston to 134 Mpc with duty factors of 74.6% and 77.0% respectively. The improvement in sensitivity and stability is a result of several upgrades to the detectors, including doubled intracavity power, the addition of an in-vacuum optical parametric oscillator for squeezed-light injection, replacement of core optics and end reaction masses, and installation of acoustic mode dampers. This paper explores the purposes behind these upgrades, and explains to the best of our knowledge the noise currently limiting the sensitivity of each detector

    Ultra-low phase noise squeezed vacuum source for gravitational wave detectors

    Get PDF
    Squeezed states of light are a valuable resource for reducing quantum noise in precision measurements. Injection of squeezed vacuum states has emerged as an important technique for reducing quantum shot noise, which is a fundamental limitation to the sensitivity of interferometric gravitational wave detectors. Realizing the most benefit from squeezed-state injection requires lowering optical losses and also minimizing squeezed quadrature fluctuations—or phase noise—to ensure that the large noise in the anti-squeezed quadrature does not contaminate the measurement quadrature. Here, we present an audio band squeezed vacuum source with 1.3+0.7−0.5 mrad of phase noise. This is a nearly tenfold improvement over previously reported measurements, improving prospects for squeezing enhancements in current and future gravitational wave detectors

    Observation of Squeezed Light in the 2  Μm Region

    Get PDF
    We present the generation and detection of squeezed light in the 2  μm wavelength region. This experiment is a crucial step in realizing the quantum noise reduction techniques that will be required for future generations of gravitational-wave detectors. Squeezed vacuum is generated via degenerate optical parametric oscillation from a periodically poled potassium titanyl phosphate crystal, in a dual resonant cavity. The experiment uses a frequency stabilized 1984 nm thulium fiber laser, and squeezing is detected using balanced homodyne detection with extended InGaAs photodiodes. We have measured 4.0±0.1  dB of squeezing and 10.5±0.5  dB of antisqueezing relative to the shot noise level in the audio frequency band, limited by photodiode quantum efficiency. The inferred squeezing level directly after the optical parametric oscillator, after accounting for known losses and phase noise, is 10.7 dB

    Broadband reduction of quantum radiation pressure noise via squeezed light injection

    Get PDF
    The Heisenberg uncertainty principle states that the position of an object cannot be known with infinite precision, as the momentum of the object would then be totally uncertain. This momentum uncertainty then leads to position uncertainty in future measurements. When continuously measuring the position of an object, this quantum effect, known as back-action, limits the achievable precision1,2. In audio-band, interferometer-type gravitational-wave detectors, this back-action effect manifests as quantum radiation pressure noise (QRPN) and will ultimately (but does not yet) limit sensitivity3. Here, we present the use of a quantum engineered state of light to directly manipulate this quantum back-action in a system where it dominates the sensitivity in the 10–50 kHz range. We observe a reduction of 1.2 dB in the quantum back-action noise. This experiment is a crucial step in realizing QRPN reduction for future interferometric gravitational-wave detectors and improving their sensitivity

    Immobilised teicoplanin does not demonstrate antimicrobial activity against Staphylococcus aureus

    Get PDF
    Abstract: Antibacterial bone biomaterial coatings appeal to orthopaedics, dentistry and veterinary medicine. Achieving the successful, stable conjugation of suitable compounds to biomaterial surfaces is a major challenge. A pragmatic starting point is to make use of existing, approved antibiotics which are known to remain functional in a stationary, immobilised state. This includes the macrocyclic glycopeptide, teicoplanin, following the discovery, in the 1990’s, that it could be used as a chiral selector in chromatographic enantiomeric separations. Importantly teicoplanin works at the level of the bacterial cell wall making it a potential candidate for biomaterial functionalisations. We initially sought to functionalise titanium (Ti) with polydopamine and use this platform to capture teicoplanin, however we were unable to avoid the natural affinity of the antibiotic to the oxide surface of the metal. Whilst the interaction between teicoplanin and Ti was robust, we found that phosphate resulted in antibiotic loss. Before contemplating the covalent attachment of teicoplanin to Ti we examined whether a commercial teicoplanin stationary phase could kill staphylococci. Whilst this commercially available material could bind N-Acetyl-L-Lys-D-Ala-D-Ala it was unable to kill bacteria. We therefore strongly discourage attempts at covalently immobilising teicoplanin and/or other glycopeptide antibiotics in the pursuit of novel antibacterial bone biomaterials
    corecore