1,218 research outputs found
Estimation of interdomain flexibility of N-terminus of factor H using residual dipolar couplings
Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e. FH1-3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1-3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC datasets, collected in media containing magnetically aligned bicelles (disk-like particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC datasets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of < 40 °. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3), could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1-4 complex
Misanthropic Person Memory when the Need to Self-Enhance is Absent
This research examined the role that the removal of the need or ability to self-enhance can play in the misanthropic processing of attributed behavioral information (i.e., remembering best negative, internally attributed behaviors and positive externally attributed behaviors). Experiment 1demonstrated that removing a personâs need to self-enhance by increasing his or her self-esteem eliminated misanthropic memory, whereas misanthropy was preserved for control participants and perceivers who had experienced a decrease in self-esteem. Furthermore, controlling for participantsâ self-evaluations eliminated the memory pattern differences between the two experimental conditions. Experiment 2 demonstrated that canceling the ability to self-enhance by having perceivers form an impression of themselves eliminated the misanthropy effect. However, the misanthropy effect was replicated when perceivers learned about an unknown other. The results were discussed with regard to the situations and factors that can increase or reduce the need to self-enhance and their implications for social information processing.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68679/2/10.1177_0146167299025002011.pd
Implicit theories and offender representativeness in judgments about sexual crime
Implicit theories structure the way people understand and respond to various human actions. Typically, people believe attributes are either fixed (entitists) or malleable (incrementalists). The present study aimed to examine: (a) whether attitudes towards sexual offenders differ depending upon oneâs implicit theory about human nature and sexual offenders, and (b) whether implicit theories are associated with judgments made about different types of child abuser. A sample of 252 community participants was recruited. Their attitudes, implicit theories, and political orientation were assessed via self-report. One of three vignettes describing an incidence of child sexual abuse was then presented. The cases were identical except the perpetrator was either an adult male, an adult female, or a male juvenile. Participants then made judgments about the offender's deserved sentence and moral character. Entitists (across both domains) held more negative attitudes than incrementalists, although the magnitude of the difference was greatest when examining implicit theories about sexual offenders. Compared to those with an incremental theory of sexual offenders, entity theorists judged sexual offending to be more: (a) indicative of the perpetratorâs moral character, and (b) deserving of punishment. However, scores were greater towards the adult male relative to the adult female and juvenile. The findings suggest that implicit theories about sexual offenders are domain-specific. They also indicate that judgments made by those with an entity theory (about sexual offenders) are affected by whether a case is representative of a stereotypical sexual offender. Implications of the findings are discussed, along with limitations and future research
Information sampling, judgment and the environment: Application to the effect of popularity on evaluations
If people avoid alternatives they dislike, a negative evaluative bias emerges because errors of underâevaluation are unlikely to be corrected. Prior work that analyzed this mechanism has shown that when the social environment exposes people to avoided alternatives (i.e., it makes them resample them), then evaluations can become systematically more positive. In this paper, we clarify the conditions under which this happens. By analyzing a simple learning model, we show that whether additional exposures induced by the social environment lead to more positive or more negative evaluations depends on how prior evaluations and the social environment interact in driving resampling. We apply these insights to the study of the effect of popularity on evaluations. We show theoretically that increased popularity leads to more positive evaluations when popularity mainly increases the chances of resampling for individuals with low current evaluations. Data on repeat stays at hotels are consistent with this condition: The popularity of a hotel mainly impacts the chances of a repeat stay for individuals with low satisfaction scores. Our results illustrate how a sampling approach can help to explain when and why people tend to like popular alternatives. They also shed new light on the polarization of attitudes across social groups
Temperature Dependence of Backbone Dynamics in Human Ileal Bile Acid-Binding Protein: Implications for the Mechanism of Ligand Binding
Human ileal bile acid-binding protein (I-BABP), a member of the family of intracellular lipid binding proteins plays a key role in the cellular trafficking and metabolic regulation of bile salts. The protein has two internal and, according to a recent study, an additional superficial binding site and binds di- and trihydroxy bile salts with positive cooperativity and a high degree of site-selectivity. Previously, in the apo form, we have identified an extensive network of conformational fluctuations on the millisecond time scale, which cease upon ligation. Additionally, ligand binding at room temperature was found to be accompanied by a slight rigidification of picosecond-nanosecond (ps-ns) backbone flexibility. In the current study, temperature-dependent N-15 NMR spin relaxation measurements were used to gain more insight into the role of dynamics in human I-BABP-bile salt recognition. According to our analysis, residues sensing a conformational exchange in the apo state can be grouped into two clusters with slightly different exchange rates. The entropy-enthalpy compensation observed for both clusters suggests a disorder-order transition between a ground and a sparsely populated higher energy state in the absence of ligands. Analysis of the faster, ps-ns motion of N-15-H-1 bond vectors indicates an unusual nonlinear temperature-dependence for both ligation states. Intriguingly, while bile salt binding results in a more uniform response to temperature change throughout the protein, the temperature derivative of the generalized order parameter shows different responses to temperature increase for the two forms of the protein in the investigated temperature range. Analysis of both slow and fast motions in human I-BABP indicates largely different energy landscapes for the apo and halo states suggesting that optimization of binding interactions might be achieved by altering the dynamic behavior of specific segments in the protein
Recommended from our members
Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand
The synthesis, lanthanide complexation, and solvent ex- traction of actinide(III) and lanthanide(III) radiotracers from nitric acid solutions by a phenanthroline-derived quadridentate bis-triazine ligand are described. The ligand separates Am(III) and Cm(III) from the lanthanides with remarkably high efficiency, high selectivity, and fast extraction kinetics compared to its 2,2'-bipyridine counterpart. Structures of the 1:2 bis-complexes of the ligand with Eu(III) and Yb(III) were elucidated by X-ray crystallography and force field calculations, respec-tively. The Eu(III) bis-complex is the first 1:2 bis-complex of a quadridentate bis-triazine ligand to be characterized by crystallography. The faster rates of extraction were verified by kinetics measurements using the rotating membrane cell technique in several diluents. The improved kinetics of metal ion extraction are related to the higher surface activity of the ligand at the phase interface. The improvement in the ligand's properties on replacing the bipyridine unit with a phenanthroline unit far exceeds what was anticipated based on ligand design alone
An initial event in insect innate immune response: structural and biological studies of interactions between β-1,3-glucan and the N-terminal domain of β-1,3-glucan recognition protein
In response to invading microorganisms, insect β-1,3-glucan recognition protein (βGRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades that promote destruction of pathogens by means of melanization or expression of antimicrobial peptides. Here we report on the NMR solution structure of the N-terminal domain of βGRP (N-βGRP) from Indian meal moth (Plodia interpunctella), which is sufficient to activate the prophenoloxidase (proPO) pathway resulting in melanin formation. NMR and isothermal calorimetric titrations of N-βGRP with laminarihexaose, a glucose hexamer containing β-1,3 links, suggest a weak binding of the ligand. However, addition of laminarin, a glucose polysaccharide (~ 6 kDa) containing β-1,3 and β-1,6 links that activates the proPO pathway, to N-βGRP results in the loss of NMR cross-peaks from the backbone 15N-1H groups of the protein, suggesting the formation of a large complex. Analytical ultra centrifugation (AUC) studies of formation of N-βGRP:laminarin complex show that ligand-binding induces sel-fassociation of the protein:carbohydrate complex into a macro structure, likely containing six protein and three laminarin molecules (~ 102 kDa). The macro complex is quite stable, as it does not undergo dissociation upon dilution to sub-micromolar concentrations. The structural model thus derived from the present studies for N-βGRP:laminarin complex in solution differs from the one in which a single N-βGRP molecule has been proposed to bind to a triple helical form of laminarin on the basis of an X-ray crystallographic structure of N-βGRP:laminarihexaose complex [Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N., and Yamaguchi, Y. (2011) J. Biol. Chem. 286, 29158-29165]. AUC studies and phenoloxidase activation measurements carried out with the designed mutants of N-βGRP indicate that electrostatic interactions involving Asp45, Arg54, and Asp68 between the ligand-bound protein molecules contribute in part to the stability of N-βGRP:laminarin macro complex and that a decreased stability is accompanied by a reduced activation of the proPO pathway. Increased β-1,6 branching in laminarin also results in destabilization of the macro complex. These novel findings suggest that ligand-induced self-association of βGRP:β-1,3-glucan complex may form a platform on a microbial surface for recruitment of downstream proteases, as a means of amplification of the initial signal of pathogen recognition for the activation of the proPO pathway
Tune in to your emotions: a robust personalized affective music player
The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listenersâ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application
- âŚ