8 research outputs found

    A broadband multi-distance approach to measure tissue oxygen saturation with continuous wave near-infrared spectroscopy

    Get PDF
    Brain tissue oxygen saturation, StO2, measured with near-infrared spectroscopy (NIRS) is of great clinical interest as it quantifies the balance between cerebral oxygen supply and demand. Some brain oximeters are based on spatially resolved spectroscopy (SRS), where NIRS data is collected at multiple distances from the light source to estimate a slope of light attenuation against distance. Other use a broadband approach which utilizes derivatives of the absorption spectra to estimate StO2, such as broadband fitting (BF). We describe a novel algorithm, broadband spatially resolved spectroscopy (BB-SRS), for estimating StO2. It is based on comparing the measured slope to a model of the attenuation slope, which depends on the optical properties of tissue. Fitting this model with a least squares fitting procedure recovers parameters describing absorption and scattering; the concentrations of oxy- and deoxy-haemoglobin and hence StO2 and the scattering parameters β and α describing the exponential dependence of scattering on wavelength. To demonstrate BB-SRS, a broadband spectrum (700 - 1000 nm, step size 2 nm) was simulated in NIRFAST and was analysed with BB-SRS, SRS and BF. The developed BB-SRS algorithm recovered StO2 with a relative error of -9%; the concentration of deoxyhaemoglobin with a relative error of +4% , oxyhaemoglobin -10%. The scattering parameters β and α were recovered with a relative error of -30% and -2%, respectively. Among the three algorithms, BB-SRS performed with the best relative error

    Non-contact universal sample presentation for room temperature macromolecular crystallography using acoustic levitation

    Get PDF
    Macromolecular Crystallography is a powerful and valuable technique to assess protein structures. Samples are commonly cryogenically cooled to minimise radiation damage effects from the X-ray beam, but low temperatures hinder normal protein functions and this procedure can introduce structural artefacts. Previous experiments utilising acoustic levitation for beamline science have focused on Langevin horns which deliver significant power to the confined droplet and are complex to set up accurately. In this work, the low power, portable TinyLev acoustic levitation system is used in combination with an approach to dispense and contain droplets, free of physical sample support to aid protein crystallography experiments. This method facilitates efficient X-ray data acquisition in ambient conditions compatible with dynamic studies. Levitated samples remain free of interference from fixed sample mounts, receive negligible heating, do not suffer significant evaporation and since the system occupies a small volume, can be readily installed at other light sources

    Viscous hydrophilic injection matrices for serial crystallography

    No full text
    Serial (femtosecond) crystallography at synchrotron and X-ray free-electron laser (XFEL) sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates - gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP) as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydro-gels as viscous injection matrices is described, namely sodium carb-oxy-methyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new matrices afford very stable adjustable streams suitable for time-resolved measurements

    Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability

    No full text
    Serial femtosecond crystallography at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems prone to radiation damage. However, de novo structure determination, i.e., without prior structural knowledge, is complicated by the inherent inaccuracy of serial femtosecond crystallography data. By its very nature, serial femtosecond crystallography data collection entails shot-to-shot fluctuations in X-ray wavelength and intensity as well as variations in crystal size and quality that must be averaged out. Hence, to obtain accurate diffraction intensities for de novo phasing, large numbers of diffraction patterns are required, and, concomitantly large volumes of sample and long X-ray free-electron laser beamtimes. Here we show that serial femtosecond crystallography data collected using simultaneous two-colour X-ray free-electron laser pulses can be used for multiple wavelength anomalous dispersion phasing. The phase angle determination is significantly more accurate than for single-colour phasing. We anticipate that two-colour multiple wavelength anomalous dispersion phasing will enhance structure determination of difficult-to-phase proteins at X-ray free-electron lasers

    Identifying Driver Behaviour Through Onboard Diagnostic Using CAN Bus Signals

    No full text
    Nowadays, traffic accidents occur due to the increasing number of vehicles. In the researches, it was determined that most of the accidents were caused by the driver. Audible and visual warnings of drivers against possible situations in traffic will reduce the risk of errors and accidents. it was observed that the traffic signs were not enough stimuli for the drivers. For this reason, stimulating electronic applications are developed for drivers in Intelligent Transport Systems. The selection of the correct stimulators by measuring the response of the drivers to different situations in different road conditions will provide a more efficient driving. For this purpose, in order to evaluate the driving behavior of the driver in this study, the speed and RPM information received by means of OBD (Onboard Diagnostic) access to the ECU (Electronic Control Unite) data of the vehicle was evaluated instantaneously. Thus driving information provides aggressive driver detection and warns of traffic hazard situations. For this purpose, an experimental system was created by using machine learning algorithms. The vehicle’s speed and RPM data have been used to determine the acceleration of the vehicle and drive. Four different types of drivers have been identified in this designed system. In this way, the driver will be able to detect their own driving. Research will be carried out on how to influence traffic flow by identifying aggressive driver behaviors. It is foreseen that some of the accidents caused by the driver can be prevented. © 2020, Springer Nature Switzerland AG
    corecore