139 research outputs found

    The effect of railway local irregularities on ground vibration

    Get PDF
    The environmental effects of ground-borne vibrations generated due to localised railway defects is a growing concern in urban areas. Frequency domain modelling approaches are well suited for predicting vibration levels on standard railway lines due to track periodicity. However, when considering individual, non-periodic, localised defects (e.g. a rail joint), frequency domain modelling becomes challenging. Therefore in this study, a previously validated, time domain, three-dimensional ground vibration prediction model is modified to analyse such defects. A range of different local (discontinuous) rail and wheel irregularity are mathematically modelled, including: rail joints, switches, crossings and wheel flats. Each is investigated using a sensitivity analysis, where defect size and vehicle speed is varied. To quantify the effect on railroad ground-borne vibration levels, a variety of exposure–response relationships are analysed, including: peak particle velocity, maximum weighted time-averaged velocity and weighted decibel velocity. It is shown that local irregularities cause a significant increase in vibration in comparison to a smooth track, and that the vibrations can propagate to greater distances from the line. Furthermore, the results show that step-down joints generate the highest levels of vibration, whereas wheel flats generate much lower levels. It is also found that defect size influences vibration levels, and larger defects cause greater vibration. Lastly, it is shown that for different defect types, train speed effects are complex, and may cause either an increase or decrease in vibration levels

    Modelling the Environmental Effects of Railway Vibrations from Different Types of Rolling Stock: A Numerical Study

    Get PDF
    This paper analyses the influence of rolling stock dynamics on ground-borne vibration levels. Four vehicle types (Thalys, German ICE, Eurostar, and Belgian freight trains) are investigated using a multibody approach. First, a numerical model is constructed using a flexible track on which the vehicles traverse at constant speed. A two-step approach is used to simulate ground wave propagation which is analysed at various distances from the track. This approach offers a new insight because the train and track are fully coupled. Therefore rail unevenness or other irregularity on the rail/wheel surface can be accurately modelled. Vehicle speed is analysed and the frequency spectrums of track and soil responses are also assessed to investigate different excitation mechanisms, such as carriage periodicities. To efficiently quantify train effects, a new (normalised) metric, defined as the ratio between the peak particle velocity and the nominal axle load, is introduced for a comparison of dynamic excitation. It is concluded that rolling stock dynamics have a significant influence on the free field vibrations at low frequencies, whereas high frequencies are dominated by the presence of track unevenness

    Proposal of a CLT reinforcement of old timber floors

    Get PDF
    Despite the fact that, from the mechanical point of view, there is no ageing issues of timber elements when they are properly used, many old timber structures require important interventions because of changes in uses (which modifies the regulating rules for example), of material decay (misuse of timber) or possibly of a faulty design or construction. In particular, timber floors in old structures often present large deflections and most the time had been designed for a maximum load much lower than the one prescribed by contemporary rules. After an introduction about timber floors and a short review about the reinforcement technics that exist, the present paper presents a new proposal for their reinforcement. The solution developed in the present paper uses a Cross Laminated Timber (CLT) panel screwed over the existing floor, keeping a small gap between the panel and the existing joists. In this way, the new “composite” floor presents higher stiffness and the gap is used for horizontal line runs. For the design of such a “composite floor”, modified Johanssen’s equations (including the gap between the CLT panel and the joists) are proposed and their application on a case study is presented.- (undefined

    A 2.5D time-frequency domain model for railway induced soil-building vibration due to railway defects

    Get PDF
    A new hybrid time-frequency modelling methodology is proposed to simulate the generation of railway vibration caused by singular defects (e.g. joints, switches, crossings), and its propagation through the track, soil and into nearby buildings. To create the full source-to-received model, first the force density due to wheel-rail-defect interaction is calculated using a time domain finite element vehicle-track-soil model. Next, the frequency domain track-soil transfer function is calculated using a 2.5D boundary/finite element approach and coupled with the force densities to recover the free-field response. Finally, the soil-structure interaction of buildings close to the line is computed using a time domain approach. The effect of defect type, train speed and building type (4-storey office block and 8-storey apartment building) on a variety of commonly used international vibration metrics (one-third octaves, PPV, MTVV) is then investigated. It is found that train speed doesn't correlate with building vibration and different defect types have a complex relationship with vibration levels both in the ground and buildings. The 8-storey apartment building has a frequency response dominated by a narrow frequency range, whereas the modal contribution of the 4-storey office building is over a wider frequency band. This results in the 8-storey building having a higher response

    Assessment of railway ground vibration in urban area using in-situ transfer mobilities and simulated vehicle-track interaction

    Get PDF
    This article proposes an alternative approach to the well-known Federal Railroad Administration method to evaluate ground vibrations induced by the passing of railway vehicles. The originality lies on the excitation mechanisms that occur in urban areas. A common source of railway-induced ground vibrations is local defects (rail joints, switches, and turnouts) which cause large amplitude excitations at isolated locations along the track. To analyse such situations, a combined numerical-experimental study is developed, based on the use of numerical train/track results and experimental mobility transfer functions. The influence of building foundation type, vehicle, defect type, and size and location is evaluated through experimental data collected in Brussels (Belgium). The results show that it is possible to assess vibrations from light rapid transit systems in the presence of local rail defects and unknown soil conditions

    Assessment of railway vibrations using an efficient scoping model

    Get PDF
    Vibration assessments are required for new railroad lines to determine the effect of vibrations on local communities. Low accuracy assessments can significantly increase future project costs in the form of further detailed assessment or unexpected vibration abatement measures. This paper presents a new, high accuracy, initial assessment prediction tool for high speed lines. A key advantage of the new approach is that it is capable of including the effect of soil conditions in its calculation. This is novel because current scoping models ignore soil conditions, despite such characteristics being the most dominant factor in vibration propagation. The model also has zero run times thus allowing for the rapid assessment of vibration levels across rail networks. First, the development of the new tool is outlined. It is founded upon using a fully validated three dimensional finite element model to generate synthetic vibration records for a wide range of soil types. These records are analysed using a machine learning approach to map relationships between soil conditions, train speed and vibration levels. Its performance is tested through the prediction of two independent international vibration metrics on four European high speed lines and it is found to have high prediction accuracy. A key benefit from this increased prediction accuracy is that it potentially reduces the volume of detailed vibration analyses required for a new high speed train line. This avoids costly in-depth studies in the form of field experiments or large numerical models. Therefore the use of the new tool can result in cost savings

    A transfer function method to predict building vibration and its application to railway defects

    Get PDF
    This work presents a simplified method to evaluate building shaking due to arbitrary base excitations, and an example application to railway problems. The model requires minimal computational effort and can be applied to a wide range of footing shapes, thus making it attractive for scoping-type analysis. It uses the soil excitation spectrum at the building footing location as it’s input, and computes the building response at any arbitrary location within it’s 3D structure. To show an application of the model versatility, it is used to compute building response due to a variety of singular railway defects (e.g. switches/crossings). It is however suitable for more general applications including railway problems without defects. The approach is novel because current railway scoping models do not use soil-structure transfer functions combined with free-field response to estimate building vibration by railway defects. First the soil-structure interaction approach is outlined for both rigid and flexible footings. Then it is validated by comparing results against a comprehensive fully-coupled 3D FEM-BEM model. Finally, it is used to analyse the effect of a variety of variables related to railway defects on building response. Local track defects are shown to have a strong influence on building vibrations. Further, vibration levels close to the threshold of human comfort are found in buildings close to the railway line. Overall the new approach allows for the computation of building vibrations accounting for soil-structure interaction, floor amplification and the measured/computed free-field response due to railway traffic using minimal computational effort

    Scoping prediction of re-radiated ground-borne noise and vibration near high speed rail lines with variable soils

    Get PDF
    This paper outlines a vibration prediction tool, ScopeRail, capable of predicting in-door noise and vibration, within structures in close proximity to high speed railway lines. The tool is designed to rapidly predict vibration levels over large track distances, while using historical soil information to increase accuracy. Model results are compared to an alternative, commonly used, scoping model and it is found that ScopeRail offers higher accuracy predictions. This increased accuracy can potentially reduce the cost of vibration environmental impact assessments for new high speed rail lines. To develop the tool, a three-dimensional finite element model is first outlined capable of simulating vibration generation and propagation from high speed rail lines. A vast array of model permutations are computed to assess the effect of each input parameter on absolute ground vibration levels. These relations are analysed using a machine learning approach, resulting in a model that can instantly predict ground vibration levels in the presence of different train speeds and soil profiles. Then a collection of empirical factors are coupled with the model to allow for the prediction of structural vibration and in-door noise in buildings located near high speed lines. Additional factors are also used to enable the prediction of vibrations in the presence of abatement measures (e.g. ballast mats and floating slab tracks) and additional excitation mechanisms (e.g. wheelflats and switches/crossings)

    Railway-induced ground vibrations – a review of vehicle effects

    Get PDF
    This paper is a review of the effect of vehicle characteristics on ground- and track borne-vibrations from railways. It combines traditional theory with modern thinking and uses a range of numerical analysis and experimental results to provide a broad analysis of the subject area. First, the effect of different train types on vibration propagation is investigated. Then, despite not being the focus of this work, numerical approaches to vibration propagation modelling within the track and soil are briefly touched upon. Next an in-depth discussion is presented related to the evolution of numerical models, with analysis of the suitability of various modelling approaches for analysing vehicle effects. The differences between quasi-static and dynamic characteristics are also discussed with insights into defects such as wheel/rail irregularities. Additionally, as an appendix, a modest database of train types are presented along with detailed information related to their physical attributes. It is hoped that this information may provide assistance to future researchers attempting to simulate railway vehicle vibrations. It is concluded that train type and the contact conditions at the wheel/rail interface can be influential in the generation of vibration. Therefore, where possible, when using numerical approach, the vehicle should be modelled in detail. Additionally, it was found that there are a wide variety of modelling approaches capable of simulating train types effects. If non-linear behaviour needs to be included in the model, then time domain simulations are preferable, however if the system can be assumed linear then frequency domain simulations are suitable due to their reduced computational demand

    Field testing and analysis of high speed rail vibrations

    Get PDF
    This paper outlines an experimental analysis of ground-borne vibration levels generated by high speed rail lines on various earthwork profiles (at-grade, embankment, cutting and overpass). It also serves to provide access to a dataset of experimental measurements, freely available for download by other researchers working in the area of railway vibration (e.g. for further investigation and/or the validation of vibration prediction models). First, the work outlines experimental investigations undertaken on the Belgian high speed rail network to investigate the vibration propagation characteristics of three different embankment conditions. The sites consist of a 5.5 m high embankment, an at-grade section and a 7.2 m deep cutting. The soil material properties of each site are determined using a ‘Multichannel Analysis of Surface Waves’ technique and verified using refraction analysis. It is shown that all sites have relatively similar material properties thus enabling a generalised comparison. Vibration levels are measured in three directions, up to 100 m from the track due to three different train types (Eurostar, TGV and Thalys) and then analysed statistically. It is found that contrary to commonly accepted theory, vertical vibrations are not always the most dominant, and that horizontal vibrations should also be considered, particularly at larger offsets. It is also found that the embankment earthworks profile produced the lowest vibration levels and the cutting produced the highest. Furthermore, a low (positive) correlation between train speed and vibration levels was found. A selection of the results can be downloaded from www.davidpconnolly.com
    corecore