174 research outputs found
Functional Genomic Investigation of Aromatic Aminotransferases Involved in Ephedrine Alkaloid Biosynthesis in Ephedra Sinica (Stapf)
Ephedra sinica (Ephedraceae) is a broom-like shrub cultivated in arid regions of China, Korea and Japan. This medicinal plant accumulates large amounts of the ephedrine alkaloids, including (S)-cathinone, (1R,2S)-norephedrine, (1R,2S)-ephedrine and (1S,2S)-pseudoephedrine in its aerial tissues. These analogues of amphetamine mimic adrenaline and stimulate the sympathetic nervous system. While much is known about their pharmacological properties, the biological mechanisms by which they are synthesized remains largely unknown. A functional genomics platform was established in order to investigate alkaloid biosynthesis. RNA was extracted from Ephedra sinica stems and sequenced by Illumina HiSeq2000 next-generation sequencing. Candidate biosynthetic enzymes were obtained from this EST collection based on similarity to characterized enzymes with similar functions. This portion of the collaborative study is focused on identifying aminotransferase enzymes involved in alkaloid biosynthesis. Two functional aromatic aminotransferase enzymes, possibly involved in ephedrine biosynthesis have been identified. One exhibiting much greater enzymatic activity was chosen for characterization
The Batten Disease Palmitoyl Protein Thioesterase 1 Gene Regulates Neural Specification and Axon Connectivity during Drosophila Embryonic Development
Palmitoyl Protein Thioesterase 1 (PPT1) is an essential lysosomal protein in the mammalian nervous system whereby defects result in a fatal pediatric disease called Infantile Neuronal Ceroids Lipofuscinosis (INCL). Flies bearing mutations in the Drosophila ortholog Ppt1 exhibit phenotypes similar to the human disease: accumulation of autofluorescence deposits and shortened adult lifespan. Since INCL patients die as young children, early developmental neural defects due to the loss of PPT1 are postulated but have yet to be elucidated. Here we show that Drosophila Ppt1 is required during embryonic neural development. Ppt1 embryos display numerous neural defects ranging from abnormal cell fate specification in a number of identified precursor lineages in the CNS, missing and disorganized neurons, faulty motoneuronal axon trajectory, and discontinuous, misaligned, and incorrect midline crossings of the longitudinal axon bundles of the ventral nerve cord. Defects in the PNS include a decreased number of sensory neurons, disorganized chordotonal neural clusters, and abnormally shaped neurons with aberrant dendritic projections. These results indicate that Ppt1 is essential for proper neuronal cell fates and organization; and to establish the local environment for proper axon guidance and fasciculation. Ppt1 function is well conserved from humans to flies; thus the INCL pathologies may be due, in part, to the accumulation of various embryonic neural defects similar to that of Drosophila. These findings may be relevant for understanding the developmental origin of neural deficiencies in INCL
Expressed sequence tag analysis of khat (Catha edulis) provides a putative molecular biochemical basis for the biosynthesis of phenylpropylamino alkaloids
Khat (Catha edulis Forsk.) is a flowering perennial shrub cultivated for its neurostimulant properties resulting mainly from the occurrence of (S)-cathinone in young leaves. The biosynthesis of (S)-cathinone and the related phenylpropylamino alkaloids (1S,2S)-cathine and (1R,2S)-norephedrine is not well characterized in plants. We prepared a cDNA library from young khat leaves and sequenced 4,896 random clones, generating an expressed sequence tag (EST) library of 3,293 unigenes. Putative functions were assigned to > 98% of the ESTs, providing a key resource for gene discovery. Candidates potentially involved at various stages of phenylpropylamino alkaloid biosynthesis from L-phenylalanine to (1S,2S)-cathine were identified
A COMPARATIVE MAPPING OF ENZYMES INVOLVED IN HEXOSEMONOPHOSPHATE SHUNT AND CITRIC ACID CYCLE IN THE BRAIN *
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66082/1/j.1471-4159.1963.tb05042.x.pd
Consensus Recommendations for the Use of Automated Insulin Delivery (AID) Technologies in Clinical Practice
International audienceThe significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past six years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage
A pandemic recap : lessons we have learned
On January 2020, the WHO Director General declared that the outbreak constitutes a Public Health Emergency of International Concern. The world has faced a worldwide spread crisis and is still dealing with it. The present paper represents a white paper concerning the tough lessons we have learned from the COVID-19 pandemic. Thus, an international and heterogenous multidisciplinary panel of very differentiated people would like to share global experiences and lessons with all interested and especially those responsible for future healthcare decision making. With the present paper, international and heterogenous multidisciplinary panel of very differentiated people would like to share global experiences and lessons with all interested and especially those responsible for future healthcare decision making.Non peer reviewe
- …