238 research outputs found

    A Multiwavelength Consensus on the Main Sequence of Star-Forming Galaxies at z~2

    Full text link
    We compare various star formation rate (SFR) indicators for star-forming galaxies at 1.4<z<2.51.4<z<2.5 in the COSMOS field. The main focus is on the SFRs from the far-IR (PACS-Herschel data) with those from the ultraviolet, for galaxies selected according to the BzK criterion. FIR-selected samples lead to a vastly different slope of the SFR-stellar mass (M∗M_*) relation, compared to that of the dominant main sequence population as measured from the UV, since the FIR selection picks predominantly only a minority of outliers. However, there is overall agreement between the main sequences derived with the two SFR indicators, when stacking on the PACS maps the BzK-selected galaxies. The resulting logarithmic slope of the SFR-{M∗M_*} relation is ∌0.8−0.9\sim0.8-0.9, in agreement with that derived from the dust-corrected UV-luminosity. Exploiting deeper 24ÎŒ\mum-Spitzer data we have characterized a sub-sample of galaxies with reddening and SFRs poorly constrained, as they are very faint in the BB band. The combination of Herschel with Spitzer data have allowed us to largely break the age/reddening degeneracy for these intriguing sources, by distinguishing whether a galaxy is very red in B-z because of being heavily dust reddened, or whether because star formation has been (or is being) quenched. Finally, we have compared our SFR(UV) to the SFRs derived by stacking the radio data and to those derived from the Hα\alpha luminosity of a sample of star-forming galaxies at 1.4<z<1.71.4<z<1.7. The two sets of SFRs are broadly consistent as they are with the SFRs derived from the UV and by stacking the corresponding PACS data in various mass bins.Comment: Accepted for publication in MNRA

    Predicting emission line fluxes and number counts of distant galaxies for cosmological surveys

    Get PDF
    open12siWe estimate the number counts of line emitters at high redshift and their evolution with cosmic time based on a combination of photometry and spectroscopy. We predict the H α, H ÎČ, [O II], and [O III] line fluxes for more than 35 000 galaxies down to stellar masses of ∌109 M⊙ in the COSMOS and GOODS-S fields, applying standard conversions and exploiting the spectroscopic coverage of the FMOS-COSMOS survey at z ∌ 1.55 to calibrate the predictions. We calculate the number counts of H α, [O II], and [O III] emitters down to fluxes of 1 × 10-17 erg cm-2 s-1 in the range 1.4 &lt; z &lt; 1.8 covered by the FMOS-COSMOS survey. We model the time evolution of the differential and cumulative H α counts, steeply declining at the brightest fluxes. We expect ∌9300-9700 and ∌2300-2900 galaxies deg-2 for fluxes ≄1 × 10-16 and ≄2 × 10-16 erg cm-2 s-1 over the range of 0.9 &lt; z &lt; 1.8. We show that the observed evolution of the main sequence of galaxies with redshift is enough to reproduce the observed counts variation at 0.2 &lt; z &lt; 2.5. We characterize the physical properties of the H α emitters with fluxes ≄2 × 10-16 erg cm-2 s-1 including their stellar masses, UV sizes, [N II]/H α ratios and H α equivalent widths. An aperture of R ∌ Re ∌ 0.5 arcsec maximizes the signal-to-noise ratio for a detection, whilst causing a factor of ∌2 × flux losses, influencing the recoverable number counts, if neglected. Our approach, based on deep and large photometric data sets, reduces the uncertainties on the number counts due to the selection and spectroscopic samplings whilst exploring low fluxes. We publicly release the line flux predictions for the explored photometric samples.mixedopenValentino, F.; Daddi, E.; Silverman, J. D.; Puglisi, A.; Kashino, D.; Renzini, A.; Cimatti, A.; Pozzetti, L.; Rodighiero, G.; Pannella, M.; Gobat, R.; Zamorani, G.Valentino, F.; Daddi, E.; Silverman, J. D.; Puglisi, A.; Kashino, D.; Renzini, A.; Cimatti, A.; Pozzetti, L.; Rodighiero, G.; Pannella, M.; Gobat, R.; Zamorani, G

    The FMOS-COSMOS survey of star-forming galaxies at z ~ 1.6. I. H\alpha -based star formation rates and dust extinction

    Full text link
    We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at 1.4<z<1.71.4<z<1.7. The high-resolution mode is implemented to detect Hα\alpha in emission between 1.6−1.8ÎŒm1.6{\rm -}1.8 \mathrm{\mu m} with fHα≳4×10−17f_{\rm H\alpha}\gtrsim4\times10^{-17} erg cm−2^{-2} s−1^{-1}. Here, we specifically focus on 271 sBzK-selected galaxies that yield a Hα\alpha detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further JJ-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction (0.6â‰ČAHαâ‰Č2.50.6\lesssim A_\mathrm{H\alpha} \lesssim 2.5) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission \hbox{Estar(B−V)/Eneb(B−V)E_\mathrm{star}(B-V)/E_\mathrm{neb}(B-V)} is 0.7--0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an Hα\alpha-based main sequence with a slope (0.81±0.040.81\pm0.04) and normalization similar to previous studies at these redshifts.Comment: 6 pages, 4 figures, and 1 table. Published in ApJ Letter

    The FMOS-COSMOS survey of star-forming galaxies at z~1.6 III. Survey design, performance, and sample characteristics

    Get PDF
    We present a spectroscopic survey of galaxies in the COSMOS field using the Fiber Multi-Object Spectrograph (FMOS), a near-infrared instrument on the Subaru Telescope. Our survey is specifically designed to detect the Halpha emission line that falls within the H-band (1.6-1.8 um) spectroscopic window from star-forming galaxies with 1.4 ~10^10 Msolar. With the high multiplex capability of FMOS, it is now feasible to construct samples of over one thousand galaxies having spectroscopic redshifts at epochs that were previously challenging. The high-resolution mode (R~2600) effectively separates Halpha and [NII]6585 thus enabling studies of the gas-phase metallicity and photoionization state of the interstellar medium. The primary aim of our program is to establish how star formation depends on stellar mass and environment, both recognized as drivers of galaxy evolution at lower redshifts. In addition to the main galaxy sample, our target selection places priority on those detected in the far-infrared by Herschel/PACS to assess the level of obscured star formation and investigate, in detail, outliers from the star formation rate - stellar mass relation. Galaxies with Halpha detections are followed up with FMOS observations at shorter wavelengths using the J-long (1.11-1.35 um) grating to detect Hbeta and [OIII]5008 that provides an assessment of extinction required to measure star formation rates not hampered by dust, and an indication of embedded Active Galactic Nuclei. With 460 redshifts measured from 1153 spectra, we assess the performance of the instrument with respect to achieving our goals, discuss inherent biases in the sample, and detail the emission-line properties. Our higher-level data products, including catalogs and spectra, are available to the community.Comment: 26 pages, Updated version resubmitted to ApJSS; Data products and catalogs are now available at http://member.ipmu.jp/fmos-cosmos

    The FMOS-COSMOS survey of star-forming galaxies at z~1.6. IV: Excitation state and chemical enrichment of the interstellar medium

    Get PDF
    We investigate the physical conditions of ionized gas in high-z star-forming galaxies using diagnostic diagrams based on the rest-frame optical emission lines. The sample consists of 701 galaxies with an Ha detection at 1.4â‰Čzâ‰Č1.71.4\lesssim z\lesssim1.7, from the FMOS-COSMOS survey, that represent the normal star-forming population over the stellar mass range 109.6â‰ČM∗/M⊙â‰Č1011.610^{9.6} \lesssim M_\ast/M_\odot \lesssim 10^{11.6} with those at M∗>1011 M⊙M_\ast>10^{11}~M_\odot being well sampled. We confirm an offset of the average location of star-forming galaxies in the BPT diagram ([OIII]/Hb vs. [NII]/Ha), primarily towards higher [OIII]/Hb, compared with local galaxies. Based on the [SII] ratio, we measure an electron density (ne=220−130+170 cm−3n_e=220^{+170}_{-130}~\mathrm{cm^{-3}}), that is higher than that of local galaxies. Based on comparisons to theoretical models, we argue that changes in emission-line ratios, including the offset in the BPT diagram, are caused by a higher ionization parameter both at fixed stellar mass and at fixed metallicity with additional contributions from a higher gas density and possibly a hardening of the ionizing radiation field. Ionization due to AGNs is ruled out as assessed with Chandra. As a consequence, we revisit the mass-metallicity relation using [NII]/Ha and a new calibration including [NII]/[SII] as recently introduced by Dopita et al. Consistent with our previous results, the most massive galaxies (M∗≳1011 M⊙M_\ast\gtrsim10^{11}~M_\odot) are fully enriched, while those at lower masses have metallicities lower than local galaxies. Finally, we demonstrate that the stellar masses, metallicities and star formation rates of the FMOS sample are well fit with a physically-motivated model for the chemical evolution of star-forming galaxies.Comment: 38 pages; Accepted for publication in Ap

    THE fmos-cosmos survey of star-forming galaxies at Z 1.6. II. The mass-metallicity relation and the dependence on star formation rate and dust extinction

    Get PDF
    We investigate the relationships between stellar mass, gas-phase oxygen abundance (metallicity), star formation rate (SFR), and dust content of star-forming galaxies at z 1.6 using Subaru/FMOS spectroscopy in the COSMOS field. The mass-metallicity (MZ) relation at z 1.6 is steeper than the relation observed in the local universe. The steeper MZ relation at z 1.6 is mainly due to evolution in the stellar mass where the MZ relation begins to turnover and flatten. This turnover mass is 1.2 dex larger at z 1.6. The most massive galaxies at z 1.6 (1011 M) are enriched to the level observed in massive galaxies in the local universe. The MZ relation we measure at z 1.6 supports the suggestion of an empirical upper metallicity limit that does not significantly evolve with redshift. We find an anti-correlation between metallicity and SFR for galaxies at a fixed stellar mass at z 1.6, which is similar to trends observed in the local universe. We do not find a relation between stellar mass, metallicity, and SFR that is independent of redshift; rather, our data suggest that there is redshift evolution in this relation. We examine the relation between stellar mass, metallicity, and dust extinction, and find that at a fixed stellar mass, dustier galaxies tend to be more metal rich. From examination of the stellar masses, metallicities, SFRs, and dust extinctions, we conclude that stellar mass is most closely related to dust extinction

    Spatial Periodicity of Galaxy Number Counts, CMB Anisotropy, and SNIa Hubble Diagram Based on the Universe Accompanied by a Non-Minimally Coupled Scalar Field

    Full text link
    We have succeeded in establishing a cosmological model with a non-minimally coupled scalar field ϕ\phi that can account not only for the spatial periodicity or the {\it picket-fence structure} exhibited by the galaxy NN-zz relation of the 2dF survey but also for the spatial power spectrum of the cosmic microwave background radiation (CMB) temperature anisotropy observed by the WMAP satellite. The Hubble diagram of our model also compares well with the observation of Type Ia supernovae. The scalar field of our model universe starts from an extremely small value at around the nucleosynthesis epoch, remains in that state for sufficiently long periods, allowing sufficient time for the CMB temperature anisotropy to form, and then starts to grow in magnitude at the redshift zz of ∌1\sim 1, followed by a damping oscillation which is required to reproduce the observed picket-fence structure of the NN-zz relation. To realize such behavior of the scalar field, we have found it necessary to introduce a new form of potential V(ϕ)∝ϕ2exp⁥(−qϕ2)V(\phi)\propto \phi^2\exp(-q\phi^2), with qq being a constant. Through this parameter qq, we can control the epoch at which the scalar field starts growing.Comment: 19 pages, 18 figures, Accepted for publication in Astrophysics & Space Scienc

    Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis

    Get PDF
    Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8−/−) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8−/− mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8−/−, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8−/− mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions
    • 

    corecore