405 research outputs found

    Yoichiro Nambu: Remembering an unusual physicist, a mentor and a friend

    Get PDF
    I was lucky to meet Yoichiro Nambu at the beginning of my scientific activity. The experience of working with him influenced my subsequent research and in the following I will try to convey what he transmitted to me. It was also a friendship that continued for decades in spite of the rare occasions to meet after our collaboration

    Renormalization Group and Probability Theory

    Full text link
    The renormalization group has played an important role in the physics of the second half of the twentieth century both as a conceptual and a calculational tool. In particular it provided the key ideas for the construction of a qualitative and quantitative theory of the critical point in phase transitions and started a new era in statistical mechanics. Probability theory lies at the foundation of this branch of physics and the renormalization group has an interesting probabilistic interpretation as it was recognized in the middle seventies. This paper intends to provide a concise introduction to this aspect of the theory of phase transitions which clarifies the deep statistical significance of critical universality

    A New Look at the Schouten-Nijenhuis, Fr\"olicher-Nijenhuis and Nijenhuis-Richardson Brackets for Symplectic Spaces

    Get PDF
    In this paper we re-express the Schouten-Nijenhuis, the Fr\"olicher-Nijenhuis and the Nijenhuis-Richardson brackets on a symplectic space using the extended Poisson brackets structure present in the path-integral formulation of classical mechanics.Comment: 27+1 pages, Latex, no figure

    Stochastic Resonance in Two Dimensional Landau Ginzburg Equation

    Full text link
    We study the mechanism of stochastic resonance in a two dimensional Landau Ginzburg equation perturbed by a white noise. We shortly review how to renormalize the equation in order to avoid ultraviolet divergences. Next we show that the renormalization amplifies the effect of the small periodic perturbation in the system. We finally argue that stochastic resonance can be used to highlight the effect of renormalization in spatially extended system with a bistable equilibria

    Onsager reciprocity relations without microscopic reversibility

    Full text link
    In this paper we show that Onsager--Machlup time reversal properties of thermodynamic fluctuations and Onsager reciprocity relations for transport coefficients can hold also if the microscopic dynamics is not reversible. This result is based on the explicit construction of a class of conservative models which can be analysed rigorously.Comment: revtex, no figure

    Typical state of an isolated quantum system with fixed energy and unrestricted participation of eigenstates

    Full text link
    This work describes the statistics for the occupation numbers of quantum levels in a large isolated quantum system, where all possible superpositions of eigenstates are allowed, provided all these superpositions have the same fixed energy. Such a condition is not equivalent to the conventional micro-canonical condition, because the latter limits the participating eigenstates to a very narrow energy window. The statistics is obtained analytically for both the entire system and its small subsystem. In a significant departure from the Boltzmann-Gibbs statistics, the average occupation numbers of quantum states exhibit in the present case weak algebraic dependence on energy. In the macroscopic limit, this dependence is routinely accompanied by the condensation into the lowest energy quantum state. This work contains initial numerical tests of the above statistics for finite systems, and also reports the following numerical finding: When the basis states of large but finite random matrix Hamiltonians are expanded in terms of eigenstates, the participation of eigenstates in such an expansion obeys the newly obtained statistics. The above statistics might be observable in small quantum systems, but for the macroscopic systems, it rather reenforces doubts about self-sufficiency of non-relativistic quantum mechanics for justifying the Boltzmann-Gibbs equilibrium.Comment: 20 pages, 3 figure

    Large deviation approach to non equilibrium processes in stochastic lattice gases

    Full text link
    We present a review of recent work on the statistical mechanics of non equilibrium processes based on the analysis of large deviations properties of microscopic systems. Stochastic lattice gases are non trivial models of such phenomena and can be studied rigorously providing a source of challenging mathematical problems. In this way, some principles of wide validity have been obtained leading to interesting physical consequences.Comment: Extended version of the lectures given by G. Jona-Lasinio at the 9th Brazilian school of Probability, August 200
    • …
    corecore