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STOCHASTIC PROCESSES AND QUANTUM MECHANICS 

G. JONA-LASINIO 

In this paper we shall briefly review various aspects of 
the interaction between the theory of stochastic processes and 
Quantum Mechanics. In order to get a clear picture it is very impor­
tant to distinguish from the start two situations : 

a) Stochastic processes as a description of the real world 
alternative to the usual interpretation of quantum mechanics (even 
though mathematically equivalent). 

b) Stochastic processes as a mathematical tool useful for 
representing quantities of interest to quantum mechanics. 

In the following we consider the two aspects separately and 
only in the end we comment on the relationship between them. Most of 
the material discussed here was developed in collaborations with 
G.F. De Angelis, F. Martinelli, E. Scoppola and M. Sirugue. 
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I - STOCHASTIC PROCESSES AS A REPRESENTATION OF THE REAL WORLD. 

1. Stochastic Mechanics of a Scalar Particle. 

Standard Quantum Mechanics is a probabilistic theory of the 
microscopic world in the S2nse that i ts connection with experiments 
relies on a frequency interpretation of the wave function. It is not 
however a probabilistic theory in its mathematical structure which is 
not immediately reducible to a theory of stochastic processes in a 
given probability space. This situation has stimulated over the years 
numerous attempts to introduce ordinary probabilistic concepts and 
constructions that could account for the previsions of Quantum 
Mechanics. A particularly successful one was the formulation on the 

[12] • part of Nelson of a theory based on diffusion processes which is 
mathematically equivalent to the Schrodinger description of a scalar 
particle, i .e . of a particle without internal degrees of freedom. We 
start by giving an unconventional presentation of Nelson's basic idea 

Consider the Schrodinger equation for a charged scalar par­
ticle in an electromagnetic field 

itfS^ = ^- (- itf V - -A) 2\p + V ^ (1) t z m c 

A basic consequence of (1) is the continuity equation for 2 the probability density |^| 

3 t U I2 = -VtjjjlmOKV - ^A)i/0 ] (2) 

and this will be the starting point of our construction. Suppose we 
2 

want to interpret |ip(x,t) | = p((x,t) as the probablity density at 
time t associated to a Markov process described by a transition 
function P(x' ,x,t) in such a way that 

p(x,t) = Jp o (x') P(x'?x,t)dx» (3) 

where pQ(x) is some ini t ia l distribution. Then p must satisfy a 
Fokker-P1anck equation 

3tp = Âp - V(bp) (4) 
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where v is the diffusion coefficient and b a velocity field 
(drif t) . Comparing (4) and (2) we see that such an identification is 
possible if we take v = #/m and b satisfying 

*M. i 2 <b-5 — — > ] = t • <5> 
I ^ I 

The solution of (5) is not unique. However if we require that b is c 
gradient when A = 0 we obtain the unique answer 

b = »V in U 
^ Im(iJ,(V-ĵ A)ijO 

" ~ 2 

(6) 
= U + V 

Since u and v are given explicitely in terms of the wave function 
\\j , from the Schrodinger equation we obtain their equations of motion 

8 u = ~V(Vv) - V(u.v) t zm 

d r v = - Ì ^ V + ^V(u2-v2) + f Au t m I zm 
(7) 

The stochastic process associated to b via (4) can be 
[12] 

described also in terms of the stochastic differential equation 
dx = bdt + V - dw (8) m 

where dw is the Wiener process. 

At this point (7) and (8) (or (4)) constitute a self-
contained scheme which can be used as an alternative to the usual 
quantum mechanical formalism. We shall comment later on the computatio­
nal effectiveness of the new scheme. The fundamental question facing 
the physicist is whether the stochastic processes we have constructed 
have any "reality" which could imply eventually a new interpretation 
of microphysics. An answer to this question is not simple. A first 
step should consist in my opinion in a systematic reinterpretat ion of 
basic quantum mechanical observables in terms of concepts which are 
natural from the standpoint of diffusion processes. Already at this 
stage there are various aspects to consider. For example the energies 
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of the excited states can be related, as Nelson did originally, to 
certain non ergodic processes corresponding to their wave functions. 
On the other hand they also describe the relaxation times of the pro-
cess associated to the ground state. They can be related therefore 
to exit times of the ground state process from space domains bounded 

[ 9 ] 
by the nodal surfaces of the higher wave functions . In other words 
one may take the attitude that measuring energy levels means measuring 
indirectly certain features of the ground state process. However the 
process itself does not seem to be directly accessible to observation 
if one translates the usual rules for the interpretation of quantum 
mechanics into the stochastic language. We cannot in fact measure the 
correlation between the values of the process at different times tj 
and t^ because any attempt to localize the particle changes the 
velocity field b . Therefore after the measurement at t^ we have a 
different process. 

All this does not exclude the possibility that pushing the 
stochastic language to its natural consequences one arrives at new 
questions or generalizations, meaningless or unnatural for the stan­
dard interpretation of quantum mechanics, but susceptible of experi­
mental test. 

2. Stochastic Mechanics of a Spin 1/2 Particle . 

For some time it was thought that i t would be difficult to 
extend stochastic mechanics to particles with internal degrees of 
freedom e.g. to spin 1/2 particles obeying the Pauli equation^+^ 

i3ti// = j(-iV-A)2i^+ Vi// - jH.£ip 
(9) 

ax = (10 } ' % = ( i 0 } ' a z = W ' * = 

The reason for this belief was the lack of a classical analog for the 
spin. It turned out however that using the strategy previously indica­
ted for the scalar case, the problem can be solved in a straight­
forward way simply by introducing discrete processes to describe the 

This holds when A = 0 
To simplify the subsequent discussion we set all the physical 

constants equal to 1 . 
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internal degrees of freedom. '"^ . 

Consider for simplicity the case H = const . 
Then we can write \p(x,t,o) = cp (x , t) x (o* , t) , a = ±1 where tp 
satisfies the Schrodinger equation (1) and x 

i dx(a) 
dt =-|[H z aX(a) + (Hx-iaH )x(-o)] (10) 

There is a continuity equation associated to (10) 

dIy(a) I 2 

dt = Im[(Hx + iaH ) X(a)x(-a)] (11) 

The idea is the same as before : we try to interpret (11) as a 
discrete Fokker-P1anck equation (Kolmogorov forward equation) for 
P(a) = | X (a) | 2 

dp (a) 
dt = -p(a,t)p(a) + p(-a,t)p(-a) (12) 

where p(a,t) is a transition probability per unit time. The compari­
son of (12) and (11) gives the essentially unique choice for p 

p(a,t) 
I 

|{[H 2

 + H 2 ] 2

 + Im(H -iaH ) } (13) 2 x y 1 X (<*) x Y X(o) 

One can then easily find the analogues of u and v 

r = Hz + aRe((H x- iaH y)x(-a)/ x(, a)) 

s = -a Im((Hx - iaH ) X(-a)/x(a)) 
(14) 

which obey the equations of motion 

dt 
dr - ars 

(15) 
Jl = " 2 a lH I + 2 a ( r " s } 

Notice the similarity in structure with (7) if one interprets V as 
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multiplication by q . In terms of r and s the transition 
probability reads 

\_ 
p(a,t) = \[{s2 + (r- H z )V-as] (16) 

Not all the solutions of (15) have the structure (14) so that an 
additional condition has to be imposed. For this point we refer the 
reader to ^ . 

A characteristic feature in the above construction is the appearance 
[ 3 ] 

of the ratio \{-o)/ x (a)• According to Cartan there is a geometric 
meaning associated to i t . Introduce the so called isotropic vectors 
associated to spinors 

Zj = x(°) 2 -x(-a) 2 

Z2 = i (x(a) 2 + X ( -a) 2 ) (17) 

Z3 = -2x(a)X(-a) 

which satisfy the equation 

2 2 2 
Z l + Z2 + Z3 = ° (18) 

This is a cone and the ratio x(~o")/x(a) defines a generator of the 
cone. If we introduce now the complex variable Z = r + is equation 
(15) takes the very simple form 

iff = | a |H | 2 - I 0 Z 2 (19) 

which can be interpreted geometrically as an equation of motion for a 
generator of the isotropic cone. 

The general case of an inhomogeneous magnetic field can be 
treated along similar lines. The picture which emerges is that a spin 
| particle can be described stochastically as a Brownian particle with 
two internal states moving in a velocity field which depends on the 
internal state. The latter changes at random times which in turn 
depend on the motion of the particle. The equations for the general 
case can be found in ^ ^ . 
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3. Calculations with Stochastic Mechanics. 

Although of great conceptual interest, the above scheme 
could not pretend to be a real alternative to quantum mechanics if it 
did not provide effective calculational tools. Actually an approach 
based on (7) and (8) has been crucial in the study of certain aspects 
of the semiclassica1 limit of quantum mechanics i .e . the limit 
K/m •> 0 [9,10]^ Apparently there are two main reasons for that. The 
singular perturbation problem associated with (7) for >i/m -> 0 is 
less difficult than the corresponding one for the Schrodinger 
equation, in spite of the non linearity of (7). The stochastic 
equation (8) in the limit )i/m ->• 0 can be studied with the powerful 
techniques of small random perturbations of dynamical systems. In 
this way new features of the semiclassica1 limit were discovered like 
tunneling instability due to localized deformations of the potential. 
Quite generally an approach based on (7) and (8) seems to be very 
effective for a qualitative understanding of the semic1assica1 limit. 
In fact there are several concepts from the theory ofstochastic processes 
which provide a natural and intuitive basis for a description of the 
mechanisms involved. It may be an effective approach also to the 
study of disordered quantum mechanical systems ^ 

II . STOCHASTIC PROCESSES AS AUXILIARY REPRESENTATIONS : 

The Feynman-Kac Formula and its Descendants . 

As long as we are interested in spectral properties the 
imaginary time Schrodinger equation (heat equation) is and has been 
a very powerful source of information. The reason, as it is well 
known, is the probabilistic interpretation associated to a large class 
of parabolic equations. A central role in this approach has been 
played by the so-called Feynman-Kac formula which gives the prototype 
of probabilistic expressions for the solutions of these equations. 
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For the imaginary time Schrodinger equation 

| | = = - H if, (1) 

the Feynman-Kac formula reads 
t 

- J V(x + W )ds 
<Mx,t) = E(e ° S i(̂ o(x + Wt)) (2) 

where \[» is the in i t ia l condition and the expectation is taken with 
respect to the Brownian motion of variance 1 starting at 0 for 
t = 0. To verify that (2) is the solution of (1) one proves that i t 
defines a semigroup and then uses Ito calculus. There have been 
important applications of (2) in the qualitative study of the 

[13] 
spectrum and e1gen-func11ons of H . An obvious question then is 
whether a generalization of (2) is possible for the imaginary time 
Pauli equation 

3ti|> = -|(-iV-A) 2^ - V i> + i H.aijj (3) 

The previous experience with the stochastic mechanics of spin suggests 
that besides the expectation with respect to the Brownian motion, the 
formula for the solution should contain an expectation with respect 
to a standard jump process (Poisson process) for a selected component 
of the spin. This idea turns out to be correct and the solution of (3) 
can be written t t 

-f V(x+W ) d s - i / A(x+W )dW ^ o s ^ o s s 
ijj (x , a , t) = e E{e 

t N t . N 
\ j Q Hz(x + Wg) (-1) Sads + SQ

 l o g [ j x ( H x ( x + V i a ( _ 1 ) H

y

( x + W

s

) ) ] d N s 

.ij,o(x + W t,a(-1) t ) } (4) 

where N is the standard Poisson process of parameter X . In the t ( + ) following we shall take X = 1 

(+) In concrete cases the arbitrariness of X can be used to 
introduce a time scale natural for the problem. 
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Generalizations can be written down easily for equations 
where the wave function has more then two components . A represen­
tation like (4) is interesting because the algebra connected with 
the Pauli matrices has been replaced by the expectation with respect 
to the Poisson process and no chronological product is necessary. 

We now try to convey the flavour of what can be done with 
expressions like (2) and (4) by considering a simple application and 
some prospective generalizations of physical interest. 

There is a very simple inequality which follows from (4) by 
taking the absolute value 

t . t N 
- f Vds + ± f H (-1) Sads 

|^(x,a, t) |< e E{e 

J log [Ì(H2 + H2)2]dN N Jo 6 2 x y s I , / j. tt / i \ t» i i J |^ 0(x + Wt,a(-1 ) ) I 

(5) 

which implies the following inequality for the lowest eigenvalue of 
the Pauli Hamiltonian 

EQ(A,H) > Eo(0,H') (6) 

where Hf = ( JH 2 + H2 , 0 , H ) 

In words it compares the behaviour of a charged spinning particle in an 
arbitrary electromagnetic field with that of a neutral particle in a 
planar magnetic field. 

To i l lustrate the possible uses of inequalities like (5) and 
(6) let us make a rough estimate by taking in (5) the max with respect 
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to a and performing explicitely (now it is possible) the Poisson 
integration. We obtain 

t i t 
-/ Vds + - / |H |ds 

U(x,a,t) | < E {e 2 ° 2 

1 t 2 ? \ ( 7 ) 

(H + H ) d s 
. e ° X y Max | i> (x + W ,a | } 

a 
t_ 

-J Vds 
= E{e ° Max \ty | } 

a 
where the expectation is taken with respect to the Brownian motion 
only with an obvious definition of V . Our original semigroup is now 
majorized by the evolution of a scalar Schrodinger equation with an 

— . [213] effective potential V . It is well known ' that if 

Sup E{J |V_(x + W ) |ds}< 1 (8) x ° s 

where V_ is the negative part of V , the spectrum of the 
Hamiltonian associated with V does not include eigenvalues < 0 . 
But this in turn implies that also our original problem does not have 
such eigenvalues due to the inequality for ground states, analogous 
to (6), Eq(A,H) > Eq(V) implied by (7). It is clear in this 
connection that i t would be important to exploit in a more effective 
way the explicit representation of the spin dynamics provided by (4) 
to obtain conditions on the absence of negative spectrum less strin­
gent then (8) . 

Here is a situation where this type of information would find 
interesting applications. 

Let M be a Riemaniann manifold of dimension n, A the 
* P 

associated space of p-forms, p = 0,1 , . . . , n , d and d the 
operation of exterior derivative and its adjoint. Then, as shown by 
Witten C l 4 ] , 
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Ql = d + d 

Q2 = i(d - d*) 

H = dd* + d*d 

2 2 
q, = q2 = h 
Q . Q 2 + V i " 0 

constitute what physicists call a supersymmetric structure. The zero 
eigenvalue equation Hw = 0 for harmonic p-forms can be written in 
local coordinates^^ 

g j k(D.,D n,a3). . - XP go. . . . . 
1' k' 7 i , . . .1 , l , . . . l i J 1 . i • • • 1 R • 
J ' p s = l s - l s + 1 P i 

r s 
(10) 

Z s< t= l W i , . . . i ,j i . . . . i . k i ^ x l . . . i RJk. = 0 s-l J s+1 t-1 t+1 D l l v S t 
where R is the curvature tensor. 

Its time dependent version has therefore the form of Pauli 
type equations considered in^^ . Physicists are interested in knowing 
whether such forms exist in for any p . If they do not exist 
they say that the supersymmetry is dynamically broken. From the 
geometrical point of view this corresponds to the vanishing of 
cohomology groups. In view of the previous discussion the generalized 
Feynman-Kac formulae may be an interesting tool for the study of such 
problems continuing the work initiated by Malliavin, Berthier, Gaveau, 
Vauthier^16^ . 
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I I I . CONCLUSIONS. 

First of all one should emphasize that the topics discussed 
do not exhaust all the connections between stochastic processes and 
quantum mechanics. The aspects considered reflect taste and personal 
experience of the author. Among the topics which have been left out 
I should mention the very important connection between the Feynman 
integral and Poisson processes first pointed out by Maslov then 
reformulated and considerably extended in recent years by the 

[4] 
Marseille group . This approach based on Poisson processes with 
jump amplitudes varying in a continuous way preserves in some sense 
the structure of the classical phase space and may be important for 
the study of quantum evolutions close to classical trajectories when 
X + 0 . 

In this paper we have sharply distinguished between the uses 
of stochastic processes as a representation of reality and as 
auxiliarly tools. Then one may ask whether there is any relationship 
between these different aspects. Some years ago Guerra and Ruggiero [7] 
made the intriguing remark that in certain simple cases the stochastic 
process associated to the imaginary time Schrodinger equation is 
essentially the same as the process associated to the ground state by 
stochastic mechanics (they are described by unitarily equivalent 
semigroups). This seemed to open the way to a "realist ic" interpreta­
tion of Euclidean theory. The situation now is that for the case of 
scalar Schrodinger particles the connection is generally true and 
well studied mathematically^"'. 
It seems to fail however for a scalar particle in an electromagnetic 
field and for a Pauli particle in an arbitrary magnetic field. In my 
opinion this question requires further clarification. 

In concluding we would like to mention an important problem 
connected with stochastic mechanics. To what extent can be given a 
natural mathematical formulation without invoking quantum mechanics ? 
Various people over the years have noticed that an answer to this 
question might exploit certain similarities with problems in 
stochastic control theory. A rather complete formulation of this 
aspect for the case of scalar particles has been given finally by 

[ 8 1 
Guerra and Morato 
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