80 research outputs found

    Propagating Polaritons in III-Nitride Slab Waveguides

    Full text link
    We report on III-nitride waveguides with c-plane GaN/AlGaN quantum wells in the strong light-matter coupling regime supporting propagating polaritons. They feature a normal mode splitting as large as 60 meV at low temperatures thanks to the large overlap between the optical mode and the active region, a polariton decay length up to 100 ÎĽ\mum for photon-like polaritons and lifetime of 1-2 ps; with the latter values being essentially limited by residual absorption occurring in the waveguide. The fully lattice-matched nature of the structure allows for very low disorder and high in-plane homogeneity; an important asset for the realization of polaritonic integrated circuits that could support nonlinear polariton wavepackets up to room temperature thanks to the large exciton binding energy of 40 meV

    Visualising highly localised luminescence in GaN/AlN heterostructures in nanowires

    Get PDF
    The optical properties of a stack of GaN/AlN quantum discs (QDiscs) in a GaN nanowire have been studied by spatially resolved cathodoluminescence (CL) at the nanoscale (nanoCL) using a Scanning Transmission Electron Microscope (STEM) operating in spectrum imaging mode. For the electron beam excitation in the QDisc region, the luminescence signal is highly localized with spatial extension as low as 5 nm due to the high band gap difference between GaN and AlN. This allows for the discrimination between the emission of neighbouring QDiscs and for evidencing the presence of lateral inclusions, about 3 nm thick and 20 nm long rods (quantum rods, QRods), grown unintentionally on the nanowire sidewalls. These structures, also observed by STEM dark-field imaging, are proven to be optically active in nanoCL, emitting at similar, but usually shorter, wavelengths with respect to most QDiscs. This record was migrated from the OpenDepot repository service in June, 2017 before shutting down

    Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells

    Get PDF
    We study the carrier-density-dependent recombination dynamics in m-plane InGaN/GaN multiple quantum wells in the presence of n-type background doping by time-resolved photoluminescence. Based on Fermi's golden rule and Saha's equation, we decompose the radiative recombination channel into an excitonic and an electron-hole pair contribution, and extract the injected carrier-density-dependent bimolecular recombination coefficients. Contrary to the standard electron-hole picture, our results confirm the strong influence of excitons even at room temperature. Indeed, at 300 K, excitons represent up to 63 +/- 6% of the photoexcited carriers. In addition, following the Shockley-Read-Hall model, we extract the electron and hole capture rates by deep levels and demonstrate that the increase in the effective lifetime with injected carrier density is due to asymmetric capture rates in presence of an n-type background doping. Thanks to the proper determination of the density-dependent recombination coefficients up to high injection densities, our method provides a way to evaluate the importance of Auger recombination

    Nanometer Scale Spectral Imaging of Quantum Emitters in nanowires and Its Correlation to Their Atomically Resolved Structure

    No full text
    International audienceWe report the spectral imaging in the UV to visible range with nanometer scale resolu-tion of closely packed GaN/AlN quantum discs in individual nanowires using an improved custom-made cathodoluminescence system. We demonstrate the possibility to measure full spectral features of individual quantum emitters as small as one nanometer and separated from each others by only few nanometers, and the ability to correlate their optical properties to their size, measured with atomic resolution. The direct correlation between the quantum disc size and emission wavelength allows us to evidence the quantum confined Stark effect leading to an emission below the bulk GaN band gap for discs thicker than 2.6 nm. Helped with simula-tions, we show that the internal electric field in the studied quantum discs is smaller than what is expected in the quantum well case. We evidence a clear dispersion of the emission wave-lengths of different quantum discs of identical size but different position along the wire. This dispersion is systematically correlated to a change of the diameter of the AlN shell coating the wire, and is thus attributed to the related strain variations along the wire. The present work opens the way both for fundamental studies of quantum confinement in closely packed quan-tum emitters and for characterizations of optoelectronic devices presenting carrier localization on the nanometer scale

    Nanometer-scale monitoring of the quantum confined stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires

    Get PDF
    21 pages, 11 figures, published in PRBInternational audienceWe report on a detailed study of the intensity dependent optical properties of individual GaN/AlN Quantum Disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over 3 orders of magnitude, strong non-linearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4nm), the QDisk emission energy is observed to blue-shift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (<3 nm), the blue-shift is almost absent in agreement with the negligible QCSE at such sizes. For QDisks of intermediate sizes there exists a current threshold above which the energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 pA to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the efficiency droop as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect

    Characterization and modeling of a ZnO nanowire ultraviolet photodetector with graphene transparent contact

    Get PDF
    We report the demonstration of a ZnO nanowire ultraviolet photodetector with a top transparent electrode made of a few-layered graphene sheet. The nanowires have been synthesized using a low-cost electrodeposition method. The detector is shown to be visible-blind and to present a responsivity larger than 10(4) A/W in the near ultraviolet range thanks to a high photoconductive gain in ZnO nanowires. The device exhibits a peak responsivity at 370 nm wavelength and shows a sub bandgap response down to 415 nm explained by an Urbach tail with a characteristic energy of 83 meV. The temporal response of the detector and the power dependence are discussed. A model of the photoconductive mechanism is proposed showing that the main process responsible for the photoconductive gain is the modulation of the conducting surface due to the variation of the surface depletion layer and not the reduction of recombination efficiency stemming from the electron-hole spatial separation. The gain is predicted to decrease at high incident power due to the flattening of the lateral band bending in agreement with experimental data. (C) 2013 AIP Publishing LLC
    • …
    corecore