50 research outputs found

    A neurovascular high-frequency optical coherence tomography system enables in situ cerebrovascular volumetric microscopy

    Get PDF
    Intravascular imaging has emerged as a valuable tool for the treatment of coronary and peripheral artery disease; however, no solution is available for safe and reliable use in the tortuous vascular anatomy of the brain. Endovascular treatment of stroke is delivered under image guidance with insufficient resolution to adequately assess underlying arterial pathology and therapeutic devices. High-resolution imaging, enabling surgeons to visualize cerebral arteries\u27 microstructure and micron-level features of neurovascular devices, would have a profound impact in the research, diagnosis, and treatment of cerebrovascular diseases. Here, we present a neurovascular high-frequency optical coherence tomography (HF-OCT) system, including an imaging console and an endoscopic probe designed to rapidly acquire volumetric microscopy data at a resolution approaching 10 microns in tortuous cerebrovascular anatomies. Using a combination of in vitro, ex vivo, and in vivo models, the feasibility of HF-OCT for cerebrovascular imaging was demonstrated

    PET Molecular Targets and Near-Infrared Fluorescence Imaging of Atherosclerosis

    Get PDF
    PURPOSE OF REVIEW: With this review, we aim to summarize the role of positron emission tomography (PET) and near-infrared fluorescence imaging (NIRF) in the detection of atherosclerosis. RECENT FINDINGS: (18)F-FDG is an established measure of increased macrophage activity. However, due to its low specificity, new radiotracers have emerged for more specific detection of vascular inflammation and other high-risk plaque features such as microcalcification and neovascularization. Novel NIRF probes are engineered to sense endothelial damage as an early sign of plaque erosion as well as oxidized low-density lipoprotein (oxLDL) as a prime target for atherosclerosis. Integrated NIRF/OCT (optical coherence tomography) catheters enable to detect stent-associated microthrombi. Novel radiotracers can improve specificity of PET for imaging atherosclerosis. Advanced NIRF probes show promise for future application in human. Intravascular NIRF might play a prominent role in the detection of stent-induced vascular injury

    Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies

    Get PDF
    Objectives: The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving the diagnosis and treatment of patients with atherosclerosis, including coronary artery disease. Background: Intravascular optical coherence tomography (IVOCT) is a catheter-based modality that acquires images at a resolution of ∌10 ÎŒm, enabling visualization of blood vessel wall microstructure in vivo at an unprecedented level of detail. IVOCT devices are now commercially available worldwide, there is an active user base, and the interest in using this technology is growing. Incorporation of IVOCT in research and daily clinical practice can be facilitated by the development of uniform terminology and consensus-based standards on use of the technology, interpretation of the images, and reporting of IVOCT results. Methods: The IWG-IVOCT, comprising more than 260 academic and industry members from Asia, Europe, and the United States, formed in 2008 and convened on the topic of IVOCT standardization through a series of 9 national and international meetings. Results: Knowledge and recommendations from this group on key areas within the IVOCT field were assembled to generate this consensus document, authored by the Writing Committee, composed of academicians who have participated in meetings and/or writing of the text. Conclusions: This document may be broadly used as a standard reference regarding the current state of the IVOCT imaging modality, intended for researchers and clinicians who use IVOCT and analyze IVOCT data

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies

    Mutual information of neural network initialisations: mean field approximations

    No full text

    An empirical study of derivative-free-optimization algorithms for targeted black-box attacks in deep neural networks

    No full text
    We perform a comprehensive study on the performance of derivative free optimization (DFO) algorithms for the generation of targeted black-box adversarial attacks on Deep Neural Network (DNN) classifiers assuming the perturbation energy is bounded by an ℓ∞ constraint and the number of queries to the network is limited. This paper considers four pre-existing state-of-the-art DFO-based algorithms along with a further developed algorithm built on BOBYQA, a model-based DFO method. We compare these algorithms in a variety of settings according to the fraction of images that they successfully misclassify given a maximum number of queries to the DNN. The experiments disclose how the likelihood of finding an adversarial example depends on both the algorithm used and the setting of the attack; algorithms limiting the search of adversarial example to the vertices of the ℓ∞ constraint work particularly well without structural defenses, while the presented BOBYQA based algorithm works better for especially small perturbation energies. This variance in performance highlights the importance of new algorithms being compared to the state-of-the-art in a variety of settings, and the effectiveness of adversarial defenses being tested using as wide a range of algorithms as possible

    Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage

    No full text
    The implantation of intracoronary stents is currently the standard approach for the treatment of coronary atherosclerotic disease. The widespread adoption of this technology has boosted an intensive research activity in this domain, with continuous improvements in the design of these devices, aiming at reducing problems of restenosis (re-narrowing of the stented segment) and thrombosis (sudden occlusion due to thrombus formation). Recently, a new, light-based intracoronary imaging modality, optical coherence tomography (OCT), was developed and introduced into clinical practice. Due to its very high axial resolution (10-15 mu m), it allows for in vivo evaluation of both stent strut apposition and neointima coverage (a marker of healing of the treated segment). As such, it provides valuable information on proper stent deployment, on the behaviour of different stent types in-vivo and on the effect of new types of stents (e.g. drug-eluting stents) on vessel wall healing. However, the major drawback of the current OCT methodology is that analysis of these images requires a tremendous amount of-currently manual-post-processing. In this manuscript, an algorithm is presented that allows for fully automated analysis of stent strut apposition and coverage in coronary arteries. The vessel lumen and stent struts are automatically detected and segmented through analysis of the intensity profiles of the A-lines. From these data, apposition and coverage can then be measured automatically. The algorithm was validated using manual assessments by two experienced operators as a reference. High Pearson's correlation coefficients were found (R = 0.96-0.97) between the automated and manual measurements while Bland-Altman analysis showed no significant bias with good limits of agreement. As such, it was shown that the presented algorithm provides a robust and fast tool to automatically estimate apposition and coverage of stent struts in in-vivo OCT pullbacks. This will be important for the integration of this technology in clinical routine and for the analysis of datasets of larger clinical trials

    Intravascular Optical Coherence Tomography for Neurointerventional Surgery

    No full text
    Optical coherence tomography (OCT) is a high-resolution imaging modality that uses backscattered light to produce cross-sectional images of biological tissue with micrometer resolution. The first publication using the term OCT appeared in 1991 and arose as a collaboration between the Massachusetts Institute of Technology (MIT) and Harvard University. The high-spatial resolution makes it an optimal modality for imaging pathologies which affect individual tissue layers and evaluating microfeatures of therapeutic devices. The first in vivo application of OCT was the imaging of the anterior segment of the human eye, an ideal target for this technology since the transparency of the ocular media allows for noninvasive imaging of important eye structures, such as the cornea and the retina. A few years later, the integration of fiber optic technologies into OCT systems enabled the development of intravascular imaging catheters for the in vivo visualization of coronary arteries and in situ stents in high resolution

    High frequency optical coherence tomography assessment of homogenous neck coverage by intrasaccular devices predicts successful aneurysm occlusion

    No full text
    BACKGROUND: High frequency optical coherence tomography (HF-OCT) is a novel intravascular imaging technology developed for use in the cerebral vasculature. We hypothesize that HF-OCT characterization of intrasaccular device neck coverage can prognosticate exclusion of the aneurysm from the circulation. METHODS: Bifurcation and sidewall aneurysms were made in six dogs. Seven aneurysms were treated with next generation intrasaccular devices (NGID) and four with traditional platinum coils. HF-OCT was performed to interrogate gaps in the neck coverage, coil herniation, or acute thrombus formation. Animals were re-imaged at 7, 30, 90, and 180 days following aneurysm embolization. An automated image processing method segmented the devices at the neck of the aneurysm and quantified neck coverage. The largest coverage gap was used to predict aneurysm occlusion at 180 days. RESULTS: No difference was found in occlusion rates between the coil and NGID groups (P=0.45). Successful segmentation of the NGID construct was achieved in all cases. A coverage gap \u3e 1 mm(2) was found to predict failed aneurysm occlusion (P=0.047). This threshold was able to predict all cases of failed occlusion. The average number of devices needed to treat the aneurysm was lower in the NGID group (1.9 vs 6.75, P=0.009). HF-OCT showed strong agreement with scanning electron microscopy (bias 0.0024 mm(2) (95% CI -0.0279, 0.0327)). CONCLUSIONS: HF-OCT enables precise and accurate measurement of coverage gaps at the neck of aneurysms treated with intrasaccular devices in vivo. We provide in vivo evidence that uniform aneurysm neck coverage by intrasaccular devices is critical for aneurysm occlusion. permissions
    corecore