7,113 research outputs found

    Conditional inference for possibly unidentified structural equations

    Get PDF
    The possibility that a structural equation may not be identified casts doubt on the measures of estimator precision that are normally used. We argue that the observed identifiability test statistic is directly relevant to the precision with which the structural parameters can be estimated, and hence argue that inference in such models should be conditioned on the observed value of that statistic (or statistics). We examine in detail the effects of conditioning on the properties of the ordinary least squares (OLS) and two-stage least squares (TSLS) estimators for the coefficients of the endogenous variables in a single structural equation. We show that: (a) conditioning has very little impact on the properties of the OLS estimator, but a substantial impact on those of the TSLS estimator; (b) the conditional variance of the TSLS estimator can be very much larger than its unconditional variance (when the identifiability statistic is small), or very much smaller (when the identifiability statistic is large); and (c) conditional mean-square-error comparisons of the two estimators favour the OLS estimator when the sample evidence only weakly supports the identifiablity hypothesis, can favour TSLS slightly when that evidence is moderately favourable, but there is nothing to choose between the two estimators when the data strongly supports the identification hypothesis

    The UV Scattering Halo of the Central Source Associated with Eta Carinae

    Full text link
    We have made an extensive study of the UV spectrum of Eta Carinae, and find that we do not directly observe the star and its wind in the UV. Because of dust along our line of sight, the UV light that we observe arises from bound-bound scattering at large impact parameters. We obtain a reasonable fit to the UV spectrum by using only the flux that originates outside 0.033". This explains why we can still observe the primary star in the UV despite the large optical extinction -- it is due to the presence of an intrinsic coronagraph in the Eta Carinae system, and to the extension of the UV emitting region. It is not due to peculiar dust properties alone. We have computed the spectrum of the purported companion star, and show that it could only be directly detected in the UV spectrum preferentially in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectral region (912-1175 Ang.). However, we find no direct evidence for a companion star, with the properties indicated by X-ray studies and studies of the Weigelt blobs, in UV spectra. This might be due to reprocessing of the companion's light by the dense stellar wind of the primary. Broad FeII and [FeII] emission lines, which form in the stellar wind, are detected in spectra taken in the SE lobe, 0.2" from the central star. The wind spectrum shows some similarities to the spectra of the B & D Weigelt blobs, but also shows some marked differences in that high excitation lines, and lines pumped by Ly-alpha, are not seen. The detection of the broad lines lends support to our interpretation of the UV spectrum, and to our model for Eta Carinae.Comment: To appear in ApJ. 57 pages with 18 figure

    Exact and higher-order properties of the MLE in spatial autoregressive models, with applications to inference.

    Get PDF
    The quasi-maximum likelihood estimator for the autoregressive parameter in a spatial autoregression usually cannot be written explicitly in terms of the data. A rigorous analysis of the first-order asymptotic properties of the estimator, under some assumptions on the evolution of the spatial design matrix, is available in Lee (2004), but very little is known about its exact or higher-order properties. In this paper we first show that the exact cumulative distribution function of the estimator can, under mild assumptions, be written in terms of that of a particular quadratic form. Simple examples are used to illustrate important exact properties of the estimator that follow from this representation. In general models a complete exact analysis is not possible, but a higher-order (saddlepoint) approximation is made available by the main result. We use this approximation to construct confidence intervals for the autoregressive parameter. Coverage properties of the proposed confidence intervals are studied by Monte Carlo simulation, and are found to be excellent in a variety of circumstance

    The Atomic Physics Underlying the Spectroscopic Analysis of Massive Stars and Supernovae

    Full text link
    We have developed a radiative transfer code, CMFGEN, which allows us to model the spectra of massive stars and supernovae. Using CMFGEN we can derive fundamental parameters such as effective temperatures and surface gravities, derive abundances, and place constraints on stellar wind properties. The last of these is important since all massive stars are losing mass via a stellar wind that is driven from the star by radiation pressure, and this mass loss can substantially influence the spectral appearance and evolution of the star. Recently we have extended CMFGEN to allow us to undertake time-dependent radiative transfer calculations of supernovae. Such calculations will be used to place constraints on the supernova progenitor, to place constraints on the supernova explosion and nucleosynthesis, and to derive distances using a physical approach called the "Expanding Photosphere Method". We describe the assumptions underlying the code and the atomic processes involved. A crucial ingredient in the code is the atomic data. For the modeling we require accurate transition wavelengths, oscillator strengths, photoionization cross-sections, collision strengths, autoionization rates, and charge exchange rates for virtually all species up to, and including, cobalt. Presently, the available atomic data varies substantially in both quantity and quality.Comment: 8 pages, 2 figures, Accepted for publication in Astrophysics & Space Scienc

    A Centrality Measure for Urban Networks Based on the Eigenvector Centrality Concept.

    Get PDF
    A massive amount of information as geo-referenced data is now emerging from the digitization of contemporary cities. Urban streets networks are characterized by a fairly uniform degree distribution and a low degree range. Therefore, the analysis of the graph constructed from the topology of the urban layout does not provide significant information when studying topology–based centrality. On the other hand, we have collected geo-located data about the use of various buildings and facilities within the city. This does provide a rich source of information about the importance of various areas. Despite this, we still need to consider the influence of topology, as this determines the interaction between different areas. In this paper, we propose a new model of centrality for urban networks based on the concept of Eigenvector Centrality for urban street networks which incorporates information from both topology and data residing on the nodes. So, the centrality proposed is able to measure the influence of two factors, the topology of the network and the geo-referenced data extracted from the network and associated to the nodes. We detail how to compute the centrality measure and provide the rational behind it. Some numerical examples with small networks are performed to analyse the characteristics of the model. Finally, a detailed example of a real urban street network is discussed, taking a real set of data obtained from a fieldwork, regarding the commercial activity developed in the city

    The practical use of hypnosis in optometry

    Get PDF
    The practical use of hypnosis in optometr

    Studies of the superconducting properties of Sn1-xInxTe (x=0.38 to 0.45) using muon-spin spectroscopy

    Full text link
    The superconducting properties of Sn1-xInxTe (x = 0.38 to 0.45) have been studied using magnetization and muon-spin rotation or relaxation (muSR) measurements. These measurements show that the superconducting critical temperature Tc of Sn1-xInxTe increases with increasing x, reaching a maximum at around 4.8 K for x = 0.45. Zero-field muSR results indicate that time-reversal symmetry is preserved in this material. Transverse-field muon-spin rotation has been used to study the temperature dependence of the magnetic penetration depth lambda(T) in the mixed state. For all the compositions studied, lambda(T) can be well described using a single-gap s-wave BCS model. The magnetic penetration depth at zero temperature lambda(0) ranges from 500 to 580 nm. Both the superconducting gap Delta(0) at 0 K and the gap ratio Delta(0)/kBTc indicate that Sn1-xInxTe (x = 0.38 to 0.45) should be considered as a superconductor with intermediate to strong coupling.Comment: 7 pages, 6 figures, 3 table

    On the changes in the physical properties of the ionized region around the Weigelt structures in Eta Carinae over the 5.54-yr spectroscopic cycle

    Full text link
    We present HST/STIS observations and analysis of two prominent nebular structures around the central source of Eta Carinae, the knots C and D. The former is brighter than the latter for emission lines from intermediate or high ionization potential ions. The brightness of lines from intermediate and high ionization potential ions significantly decreases at phases around periastron. We do not see conspicuous changes in the brightness of lines from low ionization potential (<13.6 eV) that the total extinction towards the Weigelt structures is that the total extinction towards the Weigelt structures is AsubV =2/0. that the total extinction towards the Weigelt structures is AV = 2.0. Weigelt C and D are characterized by an electron density of that the total extinction towards the Weigelt structures is AV = 2.0. Weigelt C and D are characterized by an electron density of 10exp6.9 cm-3 that does not significantly change throughout the orbital cycle. The electron temperature varies from 5500 K (around periastron) to 7200 K (around apastron). The relative changes in the brightness of He I lines are well reproduced by the variations in the electron temperature alone. We found that, at phases around periastron, the electron temperature seems to be higher for Weigelt C than that of D. The Weigelt structures are located close to the Homunculus equatorial plane, at a distance of about 1240 AU from the central source. From the analysis of proper motion and age, the Weigelt complex can be associated with the equatorial structure called the Butterfly Nebula surrounding the central binary system.Comment: 19 pages, 18 figure
    • …
    corecore