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Abstract

The possibility that a structural equation may not be identi…ed casts
doubt on the measures of estimator precision that are normally used. We
argue that the observed identi…ability test statistic is directly relevant to
the precision with which the structural parameters can be estimated, and
hence argue that inference in such models should be conditioned on the
observed value of that statistic (or statistics).

We examine in detail the e¤ects of conditioning on the properties of the
ordinary least squares (OLS) and two-stage least squares (TSLS) estima-
tors for the coe¢cients of the endogenous variables in a single structural
equation. We show that: (a) conditioning has very little impact on the
properties of the OLS estimator, but a substantial impact on those of the
TSLS estimator; (b) the conditional variance of the TSLS estimator can be
very much larger than its unconditional variance (when the identi…ability
statistic is small), or very much smaller (when the identi…ability statistic
is large); and (c) conditional mean-square-error comparisons of the two es-
timators favour the OLS estimator when the sample evidence only weakly
supports the identi…ablity hypothesis, can favour TSLS slightly when that
evidence is moderately favourable, but there is nothing to choose between
the two estimators when the data strongly supports the identi…cation hy-
pothesis.
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1 Introduction

A niggling concern for econometricians for many years has been the possibility

that structural models may not be identi…ed (Sims (1980)), or may be only par-

tially identi…ed (Phillips (1989)), or may involve “weak instruments” (Staiger

and Stock (1997)). Recent literature on both exact distribution theory and

asymptotics for this model suggests that this concern is fully justi…ed.

The work of Phillips (1983), (1989) and Hillier (1985), (1990) has made it

clear that if the exclusion restrictions imposed on (the exogenous variables in) the

structural equation are spurious (i.e., the structural equation is totally uniden-

ti…ed), then the densities of the ordinary least squares (OLS), two-stage least

squares (TSLS), and limited information maximum likelihood (LIML) estimators

of the coe¢cients of the endogenous variables depend only on the error covariance

matrix, and not on the structural parameters, so that none of these statistics con-

tains information about those parameters. Since also standard asymptotic theory

breaks down when the model is unidenti…ed, identi…cation must be presumed if

these statistics are to be interpreted as useful estimators.

Motivated by such concerns, recent literature on the distributions of the TSLS

and LIML estimators has started to focus on intermediate situations where the

equation of interest is neither formally identi…ed, nor totally unidenti…ed. To

bridge the gap, Phillips (1989) has introduced the idea of partially identi…ed

models. These are models for which some, but not all, of the parameters are

identi…ed after a rotation of coordinates in the space of both the endogenous

and exogenous variables. Choi and Phillips (1992) have found that in such

models the distributions of the usual estimators of both the identi…ed and the

unidenti…ed coe¢cients of the endogenous variables are mean- and covariance

matrix- mixed-normal. Although the density of the estimator of the unidenti…ed

parameters does not depend on those parameters, it does depend on the identi…ed

parameters. As far as asymptotics are concerned, the estimator of the identi…ed

parameters is consistent, but conventional asymptotics does not apply. Moreover,

the estimator of the unidenti…ed parameters converges in law to a non-degenerate

distribution, but this is di¤erent from the small-sample distribution.

In a di¤erent attempt to study intermediate cases Staiger and Stock (1997)

de…ne a notion of weakly identi…ed models. Such models have two character-

istics: they are formally identi…ed for all …nite sample sizes, but the covariance
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between the instruments and the included endogenous variables is assumed to

be in a O(T¡1=2) neighbourhood of zero, where T is the sample size. Staiger

and Stock (1997) show that standard asymptotics fails for such models, and that

the asymptotic distributions of the usual estimators have the same stucture as

their exact distributions under normality (i.e., mixed-normal). These results

lead Staiger and Stock to stress the importance of reporting the test statistic

for identi…cation, but they do not indicate how the value of that statistic should

modify inference, if at all.

A related recent development is based on the observation that inference on

structural parameters is essentially a generalisation of the Fieller-Creasy problem

(see Wallace (1980)). Sche¤é (1970) de…nes a con…dence set to be improper if it

has positive probability of being the entire parameter space. In the Fieller-Creasy

problem, this probability corresponds to the probability that what is essentially

an identi…ability test statistic is small. Generalising Koschat (1987) and Gleser

and Hwang (1987), Dufour (1997) has shown that in a potentially unidenti…ed

structural model valid con…dence sets must be improper in Sche¤é’s sense, and

argues in favour of Anderson-Rubin-type con…dence sets (a generalisation of the

Fieller-Creasy solution). It is important to note that, in all three of these papers,

“potentially unidenti…ed” really means that, although the model may be formally

identi…ed, it is impossible to rule out a priori models that are arbitrarily close

to being unidenti…ed.

In this paper we argue that the correct way to take account of the possibility

that such a model may be formally unidenti…ed, or arbitrarily close to being so, is

to explicitly take account of the sample evidence on the identi…cation of the model

by conditioning on an identi…ability test statistic (or statistics). In particular,

we argue that the reported precision of the parameter estimates should be that

in the conditional distribution of the estimator given the observed value of an

identi…ability test statistic, and not the unconditional precision. The analysis

is exact rather than asymptotic, and supplements the work of Staiger and Stock

(1997) by suggesting exactly how the identi…ability test statistic should a¤ect

inference procedures for these models.

The paper is organised as follows. The crux of the paper will be the argument

that, in inference problems of this type, conditional measures of estimator preci-

sion are more relevant than unconditional measures. For expositional purposes

we use the Fieller-Creasy problem as a model for this argument, and only later
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(in Section 3) apply it to the more complex problem of structural estimation.

The main argument is presented in Section 2. In Section 3 we introduce the

structural model, and generalise the key parts of the argument from Section 2 to

this more complicated case. In Section 4 we present explicit conditional results

for the OLS and TSLS estimators of the coe¢cients of the endogenous variables,

and give new measures of the precision of these estimators that properly re‡ect

the possibility that the model may not be identi…ed. Among our conclusions

in this section is the fact that the conditional density of the OLS estimator is

quite insensitive to the identi…ability statistic, while that of the TSLS estimator

is sensitive to it. Thus, OLS can dominate TSLS, or vice versa, depending on the

data actually obtained. Clearly, this conclusion, and its implications for applied

work, are quite at odds with received opinion on inference procedures for the

structural model.

2 The Argument for Conditioning

2.1 Conditioning: Post-Data Precision

Reporting the results of an inference procedure, whether it be inference about

the values of unknown parameters, or a decision about whether certain propo-

sitions of interest about the model under study are correct or false, entails two

inter-related components: reporting the results of the procedure as applied to

the data at hand, and reporting some measure of the likely precision that can

be attributed to those results. For parametric estimation problems - our con-

cern here - precision is usually indicated by reporting a con…dence set for the

parameter(s) of interest, together with its con…dence level, or by reporting the

(typically, estimated) variance or mean squared error (or approximations thereto)

of the estimator chosen.

Now, the standard frequentist measures of the precision of an inference have,

until recently, relied entirely on pre-data assessments of the procedure used, ob-

tained by averaging (some relevant property of the procedure) over the entire

sample space. But, as Lindsay and Li (1997) remark: “After the data is ob-

served, however, the actual “postexperimental” error associated with that partic-

ular sample become more relevant”. Thus, for an estimation problem: “...the

average error is an attribute of an estimator,...., whereas the postexperimental

error is an attribute of an estimate,....” (See also Goutis and Casella (1995) for
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a recent discussion). The suggestion implicit here is that certain features of the

sample actually obtained may be pertinent to the assessment of the precision of

the estimate, but of course are immaterial to the pre-data (average) properties of

the estimator.

Any attempt to assess the likely precision of an estimate - that is, to assess

the likely precision of the procedure in the sample actually available - clearly

(except to a committed Bayesian) must involve some sort of averaging process,

but, equally, must hold certain aspects of the sample actually used …xed. In

other words, whatever precision measure is used, it must, if it is to measure a

property of the estimate (rather than the estimator) be conditional on certain

aspects of the sample remaining …xed at their observed values. Thus, we take it

as self-evident that any post-data measure of the precision of an estimate must

be conditional. The problem, both in practice and from a philosophical point of

view, is precisely what to condition on. That is, how can one identify events that

are pertinent to the precision achieved by an inference procedure?

The only situations in which there seems to be widespread agreement among

(frequentist) statisticians - both that conditioning is sensible, and upon what to

condition - are those in which there is an exact ancillary statistic (cf. Cox (1958),

Efron and Hinkley (1978), Barndor¤-Nielsen (1980)). This agreement is almost

certainly attributable to the fact that, under suitable assumptions, it is straight-

forward to show that the Fisher information based on the conditional distribution

of (say) the maximum likelihood estimator given the ancillary is identical to that

of the full su¢cient statistic, while the marginal density of the estimator must

yield smaller Fisher information. That is, conditioning on the ancillary recovers

information that would otherwise be lost. Even here the problem is di¢cult (see

the collected papers by D. Basu edited by Ghosh (1988)), and outside this fairly

narrow class of problems study of the problem has barely begun. It is important

to notice, though, that the converse of this advice is not implied, or even sug-

gested, by its adherents. The motivation for conditioning at all, whether on an

ancillary statistic or not, is undeniably a concern - similar to that expressed by

Lindsay and Li - to obtain a more relevant measure of the inferential precision

actually achieved in the sample (see also Barndor¤-Nielsen’s comments on the

paper by Efron and Hinkley (1978), and the discussion in Chapter 2 of Cox and

Hinkley (1974)).

We do not intend to enter into the wider debate on these issues here. However,
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we shall advocate, for a particular class of problems to be described shortly,

conditional measures of precision, and for precisely the reason that applies in

the wider problem: to obtain a more relevant measure of the precision achieved

in the sample actually available. As noted above, the problem is to identify

aspects of the data that are pertinent to the precision of the estimate, and we

shall argue that, in the types of models we are considering, the structure of the

problem clearly identi…es which events a¤ect precision. We begin by discussing

the simplest possible example of the type of problem we shall be concerned with

- the Fieller-Creasy problem.

2.2 The Fieller-Creasy Problem

The Fieller-Creasy problem is a celebrated, apparently straightforward, inference

problem that produces “paradoxical” assessments of precision, namely improper

con…dence sets (see Wallace (1980) for an historical survey of the problem). The

problem contains virtually all the essential features of the structural model that is

our main concern, and is also closely related to the linear calibration (inverse re-

gression) problem (Hoadley (1970), Dobrigal, Fraser, and Gebotys (1987), Gleser

and Hwang (1987)), errors-in-variables regression, some principal component in-

ference problems, and inference on ratios of regression parameters.

Assume that the 2£1 vectors xi (i = 1,....,n) are independent N (¹, ¾2I2),

and that we are interested in either the ratio of means Ã = ¹1=¹2; or in the

direction of the vector ¹, parameterised by the angle, Á, when ¹ is expressed in

polar coordinates in the usual way. The vector of sample means, ¹x, and

s2 =
nX

i=1

£
(x1i ¡ ¹x1)

2 + (x2i ¡ ¹x2)
2¤ ;

are jointly su¢cient for (¹; ¾2), ¹x » N(¹; (¾2=n) I2); ¹x is independent of s2; and

s2=¾2 » Â2 (2 (n¡ 1)). The maximum likelihood estimator for Ã is Ã̂ = ¹x1=¹x2,

but the (unconditional) variance of Ã̂ does not exist. Fieller (1954), and Creasy

(1954) considered the problem of constructing a con…dence interval for Ã, and

the standard “Fieller solution” is based on the observation that

n(¹x1 ¡ Ã¹x2)2=~¾2
¡
1 + Ã2

¢
» F (1; 2 (n¡ 1)) ; (1)

where ~¾2 = s2=2 (n¡ 1). However, this solution entails the “paradox ” that the

con…dence interval it produces is:
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(a) the entire real line if k¹xk2 = (¹x21 + ¹x
2
2) < c = ~¾2F® (1; 2 (n¡ 1)) =n, where

F® (º1; º2) is such that PrfF (º1; º2) < F® (º1; º2)g = 1¡ ®;
(b) the interior of a …nite interval if ¹x22 > c, and

(c) the exterior of a …nite interval if k¹xk2 > c and ¹x22 < c.

Thus, it is entirely possible for, say, the 90% con…dence interval for Ã to consist

of the whole real line, and the (unconditional) expected length of the interval is

in…nite.

She¤é (1970), James, Wilkinson, and Venables (1974), Dobrigal, Fraser, and

Gebotys (1987), and Koschat (1987) all treat the problem in terms of the interest

parameter Á, rather than Ã. Essentially the same paradox arises although, as we

shall see, there is a subtle di¤erence between the two versions of the problem.

Koschat (1987), for this problem, and Gleser and Hwang (1987) for a wider

class of closely related problems, have shown that problems of this type have

the property that every con…dence set with non-zero con…dence coe¢cient must

have positive probability of being the entire parameter space, and hence must

be improper in Sche¤é’s (1970) sense. Hence, the di¢culty is not peculiar to

the Fieller solution. Dufour (1997) has extended these results to the structural

model, and other models of interest in econometrics.

2.3 Interest Parameters and Critical Sets

Now, notice that in the above Fieller problem, there is certainly no di¢culty in

obtaining an always-bounded con…dence set for the underlying parameter vector

¹. The region (sphere) de…ned by the acceptance region for a likelihood ratio

test:

F = n(¹x¡ ¹)0(¹x¡ ¹)=2~¾2 < F®(2; 2 (n ¡ 1)) (2)

is the most obvious candidate. Apart from being the likelihood ratio statistic,

F is the (unique) maximal invariant (under the group of transformations G =

f(a;H); a > 0; H(2£ 2) orthogonalg acting on the statistics (¹x¡ ¹; s2) by:

((¹x¡ ¹); s2) ¡! (aH(¹x¡ ¹); a2s2):

Thus, con…dence regions for ¹ based on F characterise the entire class of invariant

regions.

The important point, for us, about the regions (2) is that the Fieller problem

is naturally embedded in a model for which no paradox arises. In view of this
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observation, it seems clear that the “Fieller paradox” derives from the properties

of the mapping [underlying parameters] ¡! [interest parameter ], and not from

any intrinsic property of the embedding model. We shall see shortly that this

observation also applies to the structural model, but before doing so we elaborate

on its implications for the Fieller problem itself, where the situation is simpler.

If ° = ° (¹) is an everywhere continuous one-to-one function of ¹, the image

of any closed bounded set of ¹-values is a closed bounded set of °-values, so that

the (proper) con…dence set (2) for ¹ naturally induces a proper con…dence set for

° (with the same con…dence level). In this sense, inferential results for ¹ are suf-

…cient for inference about any everywhere continuous and 1-1 function of ¹; and

it seems reasonable to assert that, in these circumstances, there is no essential

di¤erence between the inference problem for ¹ and that for (any such function)

°. Of course, actual measures of precision, like estimator variances, or Fisher

information, change under reparameterisation, but, although seldom stated ex-

plicitly, estimator loss functions would usually embody exactly this invariance

under smooth reparameterisations, and so re‡ect the main idea.

On the other hand, the key characteristic of (both versions of) the Fieller

problem is that the mapping from the underlying parameter ¹ to the interest

parameter Ã (or Á) is not everywhere continuous and one-to-one. In the case of

the interest parameter Ã, the mapping ¹¡! (Ã; ¹2) (from R2 to R2) is continuous

and 1-1 everywhere except along the ¹1 axis, where Ã can take any value. In the

case of the interest parameter Á, the mapping ¹ ¡! (Á; ½) (where ½ = k¹k) is

continuous and 1-1 everywhere except at the origin (¹ = 0), where Á can take any

value. Dufour (1997) calls such subsets of the parameter space non-identi…cation

subsets, but we shall refer to them as critical sets. Notice that the critical set

depends on the de…nition of the interest parameter(s) in terms of the parameters

of the embedding model.

The Fieller solution (1) is easily obtained from (2). The line ¹1 ¡ Ã¹2 = 0

intersects the sphere k¹x¡ ¹k2 < f just if (¹x1¡Ã¹x2)2=(1+Ã2) < f: The induced

(Fieller) con…dence set for Ã is thus the set for which this line intersects the

sphere, and is a …nite interval if the sphere does not cross the ¹1-axis ( i.e.,

¹x22 > f ), is the exterior of a …nite interval if the sphere crosses the ¹1 axis but

does not include the origin, (i.e., ¹x22 < f but k¹xk2 > f ), and is the entire real

line if the sphere contains the origin (i.e. k¹xk2 < f) - see Figure 1 below, where

these three cases are labelled (a), (b), and (c) respectively. It is clear, too,
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that, for either version of the Fieller problem, the region (2) must intersect the

critical set for some values of (¹x; s2), unless it has con…dence level zero. That is,

every con…dence set for Ã (or Á) induced by (2) must be improper unless it has

con…dence level zero.

a

b

c

µ

µ1

2

Figure 1

We now generalise these observations on the Fieller problem to an arbitrary

model in which the interest parameter can take any value on a subset of the full

parameter space for the embedding model.

An Index of Precision

Generalising the Fieller problem, let p(x; µ) denote the model density for either

the sample data or the minimal su¢cient statistic, with µ 2 M ½ Rk, and consider

a reparameterisation ° : M ¡! ¡ ½ Rk: We assume that the interest parameter

°1 is a subvector of °, and, as above, that there is a non-empty subset C ½ M

such that, for µ 2 C, °1 can take any value in some set ¡1 of dimension greater

than one. That is, for µ 2 C; the mapping ° becomes a correspondence, not a

function. We call C the critical subset ofM (for the interest parameter °1). Note

that membership of C is an attribute of µ; not of °1. Let µ̂ denote the MLE for

µ; and let

LRc(x) =
n
µ; p(x; µ)=p(x; µ̂) > c

o
; 0 < c < 1; (3)

denote the con…dence region for µ based on the acceptance region for a likelihood

ratio test. The con…dence level is determined by the choice of c, with smaller

values of c corresponding to larger con…dence levels.

In practice the interest parameter may be de…ned in terms of some subset

of the full parameter vector µ. If so, LRc(x) must be modi…ed by replacing the
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numerator by its maximum value over parameters not involved in the de…nition of

°1, and the denominator by its maximum over the values of all parameters. For

expository purposes we work with the simplest case. We assume that the regions

(3) are bounded with probability one. Obviously, the acceptance region based on

any testing principle could be used in place of (3), with obvious modi…cations to

the argument that follows.

For …xed data x, and a …xed critical set C, there are two possible outcomes

for the region (3):

(a) LRc(x) intersects C for all, or all but very large, values of c. That is, LRc(x)

is “close to” C for all but very large values of c. In this case the induced con…dence

region for °1 will be the entire set ¡1 for all but very small con…dence levels, and

it seems reasonable to conclude that, with this particular data x, °1 is determined

with “low precision”;

(b) LRc(x) and C may be disjoint for all but very small values of c (of course, they

cannot be disjoint for all c if C is non-empty). That is, LRc(x) is “remote from”

C for all but very large con…dence levels. In this case it seems reasonable to

conclude that, with this particular data x, °1 is determined with “high precision”.

If we take as given the standard (frequentist) position that con…dence sets

are an adequate, if somewhat philosophically problematic, representation of the

precision of an inference, these remarks suggest that the location of LRc (x) in

relation to the critical set C has, for problems of this type, a direct bearing on

the precision with which °1 can be learnt from the data available. Moreover, they

immediately suggest an intuitively reasonable “post-data index of precision” for

inference about °1 in the type of problem we are considering, namely:

k (°1; x) = 1¡ c0; 0 < k < 1; (4)

with c0 the smallest value of c in ( 3) for which LRc (x) does not intersect C.

For, if c0 is near 1 only very “small” regions (i.e., low con…dence levels) for µ

would be compatible with a non-trivial region for °1 (with the given data), and

this indicates low precision in the ability of the data to inform about °1, while

c0 near zero would mean that very large likelihood ratio con…dence regions (with

high con…dence levels) would be (with this data) compatible with a non-trivial

interval for °1.
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Remarks

1. If C is empty, so that the mapping µ ¡! ° is everywhere 1-1, c0 = 0, because

LRc(x) can be made as large as we like without intersecting C. Thus, in this

case, k = 1 for any x, and the precision with which any everywhere 1-1 function

of µ can be located is identical to that with which µ itself can be located, as seems

natural.

2. If, with the data available, LRc(x) intersects C for all c, c0 = 1;and k = 0,

indicating that, with this data, there is no prospect of locating °1.

3. Although the acceptance region for any test on µ could be used as the un-

derlying con…dence set for µ, that based on the likelihood ratio in (3) has the

advantage that di¤erent choices for the mapping µ ¡! ° that leave the interest

parameter °1 invariant will leave k invariant.

4. k is evidently a monotonic increasing function of the maximum con…dence

level (for likelihood ratio based con…dence sets for µ) that (with the given data)

is compatible with a non-trivial con…dence set for the interest parameter °1. This

maximum compatible level (mcl) could itself be used as an index of precision (see

Table 1 below).

5. The precision for inference about the interest parameter, °1, has been de…ned

so as to depend on the entire vector µ, because membership of the critical set C is

an attribute of µ, not °1. In this respect k re‡ects information in the data about

both “nuisance parameters” and the “interest parameter”. This, it seems to us,

is natural when the true source of the inference problem has been recognised.

6. Since, under regularity conditions, the power of the likelihood ratio test goes

to unity as n ! 1, it is clear from (5) that, provided µ =2 C, k ! 1 in probability

as n ! 1. That is, the precision with which °1 can be located will, if µ =2 C,

approach 1 as the sample size increases. Just as importantly, the converse is also

easily seen to be true: if µ 2 C, the precision, k, goes to zero in probability as

n ! 1.

In both versions of the Fieller problem above, the second component of the

transformation ¹ ! ° (in the …rst case, ¹2, in the second, ½ ) is constant (zero)

on the critical set C. In the general case, the transformation µ ! ° = (°1; °2) can

usually be chosen so that °2 vanishes on C. The implication of this remark, then,

is that the “non-interest” parameter °2 is, far from being a “nuisance parameter”,

actually the key to the precision with which °1 can be determined: it would be

quite misleading to report precision measures for °1 that did not depend on °2,
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or on the sample evidence on the value of °2. In fact - as we shall see shortly -

this evidence is encapsulated in the precision index, k.

Now, as initially de…ned, k measures how remote (or otherwise) likelihood

ratio based con…dence regions for µ are from the critical set C. It is easy to see,

however, that k is completely determined by the likelihood ratio test statistic

for testing the hypothesis H0 : µ 2 C against an unrestricted alternative. For,

denoting this test statistic by LR (C), we have,

k = 1¡ sup
µ2C

"
p (x; µ)

p(x; µ̂)

#
= 1¡ LR (C) : (5)

Hence, the post-data precision for °1, as measured by k(°1; x), will be large just if

the likelihood ratio test statistic for testing µ 2 C is small (suggesting rejection),

and vice versa.

Examples: For the two versions of the Fieller-Creasy problem we have:

1. Interest parameter Ã: In this case the critical set C = f¹ : ¹2 = 0g, and the

region F < F® in (2) cuts the ¹1-axis unless F® � f2=2 = n¹x22=2~¾
2. Hence, for

inference about the ratio of means, Ã:

k
¡
Ã; ¹x; s2

¢
= 1¡

µ
1 +

f2
2 (n¡ 1)

¶¡n
:

2. Interest parameter Á : The largest value of F® such that the region F < F® in

(2) does not intersect C = f0g is clearly f1 = n k¹xk2 =2~¾2. Hence, for inference

about the direction of ¹:

k
¡
Á; ¹x; s2

¢
= 1¡

µ
1 +

f1
n¡ 1

¶¡n
:

Note that, as one would expect, k depends on the sample size, n. Clearly, k

di¤ers in these two versions of the Fieller problem precisely because the interest

parameter, and hence the critical set C, di¤ers.

Some values of the precision index k for the Fieller problem with interest

parameter Ã are given in Table 1 below. As an example, if the observed value of

f2 is 1, and n = 20, the maximum con…dence level (mcl) for which the con…dence

region (2) just intersects the ¹1-axis is .389, and the corresponding index of

precision for Ã, k, is .405. Both numbers indicate that Ã is poorly determined

with this data.
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Table 1: Values of k and maximum con…dence levels

n = 10
f2 6 5 4 3 2 1 .5 .2
k .944 .914 .865 .786 .651 .417 .240 .104
mcl .925 .890 .835 .750 .612 .385 .220 .094

5% critical value for LR(C) (f2): 4.41

n = 20
f2 8 6 4 2 1 .5 .2
k .978 .947 .865 .641 .405 .230 .099
mcl .973 .938 .851 .623 .389 .220 .095

5% critical value for LR(C) (f2): 4.41

The argument above establishes that, for any problem of the type we are

interested in, LR (C) is clearly relevant to the precision with which, with the

given data, the interest parameter °1 can be located, from a frequentist point

of view. Various other treatments of the problem can also be invoked to the

same end. First, for the Fieller-Creasy problem (and hence the inverse linear

regression/calibration problems), Hoadley (1970) has shown that LR (C) emerges

naturally as an index of precision when the problem is viewed from a Bayesian

perspective. In particular, under Hoadley’s assumptions, the posterior density

is more sharply peaked the larger is LR (C). Second, using a …ducial argument,

Dobrigal, Fraser, and Gebotys (1987) suggest con…dence sets (for the angle, Á,

in the polar coordinate version of the Fieller problem) conditioned on the value

of LR (C). The length of the interval suggested decreases with LR (C), but the

interval is always bounded. Finally, it is not di¢cult to show that, for the Fieller

problem in either form, the shape of the likelihood function near its maximum

depends heavily on LR (C), so that adherents to the strict likelihood principle

(including Edwards (1970)) would use LR (C) to indicate how accurately the

MLE is determined. Thus, whatever one’s statistical persuasions, for problems

of this type the observed value of the likelihood ratio test statistic for testing

H0 : µ 2 C is clearly relevant to the precision with which the data is revealing

about the interest parameter °1.
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To summarise, we have argued that:

(a) Inference problems, like the Fieller problem, and the structural equation

model, can usually be embedded in a model for which no paradox arises;

(b) The problem arises because the reparameterisation involved in the de…nition

of the interest parameter entails a critical set in the embedding parameter space

on which the interest parameter can take any value in a set of dimension greater

than one;

(c) The likelihood ratio test statistic for testing whether, in the embedding model,

and with the data actually available, the parameter lies in the critical set, is a

natural measure of the ability of the sample to inform about the interest param-

eter;

(d) Far from being a “nuisance”, the sample evidence on the non-interest param-

eter component of the reparameterised model is directly relevant to the precision

with which the interest parameter itself can be located.

Our conclusion is that the observed likelihood ratio test statistic for testing

membership of the critical set is directly relevant to the precision with which

the interest parameter can be estimated, and that it therefore makes no sense

to average over values of that statistic that have not occurred. That is, we

conclude that any sensible assessment of the properties of estimates of the interest

parameter(s) must be made conditional on such a test statistic (or other relevant

indicators of critical set membership).

Before applying this argument to the structural equation model, we end this

section with some further remarks on the “Fieller solution” that are also pertinent

in the structural equation context.

2.4 Further Remarks on Fieller’s solution

In seeking a basis for making con…dence statements about an interest parameter,

say °1, it is common practice to seek a pivotal function, Q (x; °1) say, that is a

function of the data and the interest parameter, but not a function of nuisance

parameters. That is, a function whose (unconditional) distribution (induced by

the density of x, p(x; µ)) does not depend on unknown parameters (cf. Basu

(1981), reprinted in Ghosh (1988)). If ¡1 is the parameter space for °1, and X

the sample space for x, the inequality Q (x; °1) < q (say) de…nes a subset Eq,

say, of X £ ¡1, and the con…dence region for °1 induced by Q and the observed

14



value of x is the x-section of Eq, Exq = f°1 : (x; °1) 2 Eqg. The con…dence level

´ (q) corresponding to q is ´ (q) = Pr fQ (x;°1) < qjµg, which, if Q is pivotal,

does not depend on µ. The set Exq is the con…dence set estimator for °1, and

the pair
¡
Exq ; ´ (q)

¢
together are usually interpreted as indicating the precision

with which °1 is determined by the data. The motivation for using a pivot in

the construction of
¡
Exq ; ´ (q)

¢
is, of course, that ´ (q) can, in principle, be known

exactly.

As Example 6 in Basu (1981) makes clear, the interpretation of Exq as a

con…dence set estimator for °1 (and hence an indicator of the precision with

which °1 is determined by the data) depends on the knowledge that x contains

information on °1, but certainly does not imply that it does. In other words, a

minimal necessary condition for the set Exq (induced by the pivotal quantity Q)

to reveal anything about °1 is that it is known that the observed x contains (in

some other sense) information about °1. At the very least, the density p (x; µ)

must vary with °1 under the reparameterisation µ ! °.

Now, in the cases we are concerned with here, it is known that, in the under-

lying parameterisation of the model p (x; µ), there is a critical set C for which °1
can take any value. Hence it is known that (whatever de…nition of “information”

is adopted) the data may be uninformative about °1, but it is not known whether

µ 2 C or not. We now consider the implication of this for the Fieller solution

itself.

The interpretation of the Fieller-Creasy problem above throws the Fieller

solution into doubt, because, as we shall now show, the statistic upon which it

is based is either pivotal and uninformative about the interest parameter, or not

pivotal with respect to the family of underlying models p (x; µ), and ´ (q) can be

arbitrarily small. We discuss only the case of the interest parameter Ã; similar

remarks apply in the case of the interest parameter Á.

The quantity Q (¹x; s2;Ã) = n (¹x1 ¡ Ã¹x2)2 =~¾2
¡
1 + Ã2

¢
on which the Fieller

solution is based is pivotal for the interest parameter Ã, provided ¹ =2 C, in

the sense that, for ¹ =2 C satisfying ¹1 ¡ Ã¹2 = 0 (but not otherwise), Q »
F (1; 2 (n¡ 1)). What can be said about the distribution Q when µ 2 C? It

seems to us that there are two possibilities:

(1) If it were true that ¹2 = 0 implied ¹1 = 0, as is the case under the

reparameterisation ¹ = (Ã¹2; ¹2)
0 used above, then it would remain true that

Q » F (1; 2 (n¡ 1)) for µ 2 C. This point of view could be sustained if we
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could claim to know that, for every member of the family of densities p (x;¹; ¾2),

¹2 = 0 implies ¹1 = 0; and this in fact is the maintained hypothesis in both

the calibration problem and the structural equation model. Note, however, that

this interpretation of the problem is clearly not implied by merely declaring the

interest parameter to be Ã = ¹1=¹2.

Taking this point of view, though, implies that, when ¹ 2 C, (a) p (x;¹; ¾2),

when reparameterised in terms of (Ã;¹2; ¾
2), does not depend on Ã; (b) Q is

ancillary for all real Ã; (c) Ã is arbitrary in this parameterisation. These are all

simply di¤erent manifestations of the same phenomenon: that the transformation

¹ ! (Ã; ¹2) is not one-to-one when ¹2 = 0. Clearly, since it is not known whether

¹ 2 C or not, the “con…dence set” induced by Q has nothing whatever to say

about either the value of Ã, or the precision with which it has been located by the

data.

(2) If, instead, one takes the view that, when ¹ 2 C, ¹1 is arbitrary, then, for

¹ 2 C, Q has the non-central F 0 (1; 2 (n¡ 1) ; ¸) distribution, with non-centrality

parameter ¸ = n¹21=
¡
¾2

¡
1 + Ã2

¢¢
, for every real Ã. Hence, under this interpre-

tation, Q, is not pivotal with respect to the entire family of distributions p (x; µ):

its distribution depends on whether µ 2 C or not. In fact, when ¹ 2 C, the

“con…dence level” ´ (q) = Pr fQ < qg can be arbitrarily small, because the non-

centrality parameter ¸ can be arbitrarily large. It seems clear that, under this

interpretation of the problem, it would be quite unreasonable to claim that the

“con…dence set” induced by Q, and its “con…dence level” (calculated assuming

¹1 = 0), have, by themselves, anything to (unambiguously) say about the interest

parameter Ã.

Thus, both interpretations of the Fieller problem leave the “Fieller solution”

in doubt. Exactly analogous di¢culties arise in the interpretation of Anderson-

Rubin con…dence regions for the coe¢cients of the right-hand-side endogenous

variables in the structural equation model - the “solution” favoured by Dufour

(1997). The point, of course, is that the sample does contain information on

whether or not ¹ 2 C, and this information is ignored when the inference is

based on Q (¹x; s2;¹) (and its “con…dence level”) alone (although it is re‡ected in

the “con…dence set” that this produces).

Sche¤é’s (1970) advice is to report the Fieller interval if it is bounded, and to

declare that nothing has been learnt about Ã if not - a kind of informal condition-

ing argument. However, it is not di¢cult to show that the conditional con…dence

16



level achieved by this procedure is strictly less than the nominal level implied

in (1). A second possibility would simply be to report the value of the maxi-

mum likelihood estimator, Ã̂, together with our suggested measure of precision,

k, or, equivalently, the likelihood ratio test statistic for testing H0 : µ 2 C. This

is essentially the advice o¤ered by Staiger and Stock (1997) for the structural

equation model, although without the interpretation we have given here. For

precision measures based on con…dence sets, therefore, the suggestion would be

to report the value of k, or, equivalently, the largest con…dence level for which

the con…dence region for µ in the underlying model just intersects the critical set

C.

For point estimation problems our suggestion is to report the conditional

variance of the estimator of interest, or, more completely, its conditional density,

conditional on the observed value(s) of the relevant identi…ability test statistic(s).

We turn now to an investigation of the implications that this advice has for

inference in the single strucural equation model.

3 The structural equation model

We consider a single structural equation written without explicit normalization:

Y ¯M = Z1° + u; (6)

where Y is a T £ (n+ 1) matrix of endogenous variables, Z1 is a T £ k1 matrix

of exogenous variables, and ¯M and ° are, respectively, (n+ 1) £ 1 and k1 £ 1

vectors of parameters. The reduced form corresponding to (6) is

Y = Z1©+ Z2¦ + V; (7)

where Z2 is a T £k2 matrix of exogenous variables not included in the structural

equation, © and ¦ are matrices of parameters of dimension k1 £ (n+ 1), k2 £
(n+ 1) respectively. We assume throughout that k2 ¸ n. The rows of V

are assumed to be independent normal vectors with mean zero and common

(n+ 1£ n + 1) covariance matrix

 =

µ
!11 !021
!21 22

¶
;

where !11, !21 and 22 are respectively (1£ 1), (n£ 1) and (n£ n) matrices of
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parameters.

Compatibility of the structural equation (6) and reduced form (7) requires

the existence of some ¯M 6= 0, such that

¦¯M = 0; (8)

©¯M = °, V ¯M = u. Note that (8) implies rank (¦) � n. If rank (¦) = n,

equation (8) uniquely determines the direction of ¯M (i.e., ¯4 is restricted to

lie in a one-dimensional space): If rank (¦) < n, ¯M can be written as a linear

combination of the n ¡ rank (¦) basis vectors spanning the space orthogonal to

the space spanned by the rows of ¦. Thus, in this case ¯M lies in a space of

dimension greater than one. Our assumptions about rank (¦) will be discussed

shortly.

The structural equation is usually normalized by setting ¯M = (1;¡¯00)0, and

¦ = (¼1;¦2), so that (8) becomes

¼1 ¡ ¦2¯0 = 0; (9)

and the structural equation (6) has the form

y1 = Y2¯0 + Z1° + u: (10)

Note that this normalisation implies rank(¦) < n+ 1; and ¯0 is uniquely deter-

mined if the rank of ¦2 is n. Equation (10) is identi…ed if rank (¦2) = n; and

is totally unidenti…ed if ¦2 = 0. In all other cases we have a partially identi…ed

structural equation, where some of the parameters are identi…ed after a rotation

of coordinates in the space of the endogenous variables (Phillips (1989)). It is

well known (Phillips (1983), Hillier (1985)) that the densities of the OLS, the

TSLS, and the LIML estimator of ¯0 (and ¯M) are free of any of the parameters

in (10) and the estimators are therefore uninformative about them, when the

structural equation is totally unidenti…ed. Moreover, in this case, the densities of

the TSLS and the LIML “estimators” do not depend on the sample size, so that

conventional asymptotics for these “estimators” break down.

In the remainder of the paper we will consider the classical normalization

given in equation (10). This is the analogue of the Fieller problem with in-

terest parameter Ã. Similar results can be derived for the alternative normal-

isation ¯ 04¯4 = 1; corresponding to the interest parameter Á in the Fieller

problem. It will be assumed throughout that the structural equation (10) is
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formally identi…ed, but that points in ¦2-space arbitrarily close to the critical

set C = f¦2 : rank (¦2) < ng cannot be ruled out a priori. As shown by Gleser

and Hwang (1987) and Dufour (1997), the model can be totally uninformative

about the interest parameter if there exists a sequence of points in the ¦2-space

converging to some point in the critical set. Exactly as for the Fieller-Creasy

problem discussed in the previous section, the sample evidence on the distance

of ¦2 from the critical set re‡ects how well (or how poorly) ¯0 can be located

with the data actually available. And, as argued above, this suggests that the

relevant post-data properties of estimates of ¯0 (including measures of precision)

are those conditional on that evidence.

We consider the OLS and the TSLS estimators of ¯0 in (10), which can both

be written in the form:

b = (Y 02PY2)
¡1
Y 02Py1

with, in the OLS case, P = PZ1, where PA = I ¡ A(A0A)¡1A0 for any matrix

A, and in the case of TSLS, P = PZ1 ¡ PZ , where Z = (Z1; Z2). Joint minimal

su¢cient statistics for ¦; © and  in (7) are:

©̂ = (Z 01Z1)
¡1
Z 01Y;

¦̂ = (Z 02PZ1Z2)
¡1
Z 02PZ1Y;

S = Y 0PZY;

and these remain minimal su¢cient for any ¦ with rank(¦) > 0. These statistics

are independent of each other, and

©̂ » N
³
©+ (Z 01Z1)

¡1
Z 01Z2¦; (Z

0
1Z1)

¡1  
´
;

¦̂ » N
³
¦; (Z 02PZ1Z2)

¡1  
´
;

S » Wn+1 (À ¡ k2;) ;

where À = T ¡ k1.
Partitioning ¦̂ =

³
¼̂1; ¦̂2

´
, and S comformably with ,

S =

µ
s11 s021
s21 S22

¶
;

inference about ¦2 can be based on the matrix pivot

F¦2 = S
¡ 1
2

22

³
¦̂2 ¡ ¦2

´0
Z 02PZ1Z2

³
¦̂2 ¡ ¦2

´
S
¡ 1
2

22 ; (11)

19



which has the matrix-variate F -distribution (Muirhead (1982) Theorem 10.4.1.).

Using the acceptance region for the likelihood ratio test, a con…dence region

for ¦2 can be constructed by …nding all values of ¦2 for which

jIn + F¦2j < c: (12)

This is the analogue of (2) for the Fieller problem. The con…dence region for

¦2 based on (12), P = f¦2 : jIn + F¦2 j < cg ; intersects the critical set C =

f¦2 : rank (¦2) < ng only if c is larger than min¦22C fjIn + F¦2jg. Let f1 � f2 �
::: � fn be the ordered eigenvalues of

F0 = S
¡ 1
2

22 ¦̂
0
2Z

0
2PZ1Z2¦̂2S

¡ 1
2

22 : (13)

It is straightforward to check that the region (12) intersects the critical set C just

if f1 < c, and that the post data index of precision for the interest parameter ¯0
(de…ned in (4)) is, in this case:

k
³
¯0; ¦̂2; S22

´
= 1¡ (1 + f1)¡

T
2 : (14)

The quantity (1 + f1)
¡T
2 is the likelihood ratio statistic for testing the null hy-

pothesis that rank(¦2) � n¡ 1 against the alternative that rank(¦2) = n.

In the case n = 1 the argument in Section 2 suggests that inference on ¯0
should be made conditional on the observed value of f1. In particular, the preci-

sion (variance) reported for an estimate of ¯0 should be that in the conditional

density of the estimator given the observed value of f1. In the case n > 1 the

same argument (based on the con…dence region for ¦2 induced by the acceptance

region for the likelihood ratio test) would also suggest conditioning on f1 alone.

However, the likelihood ratio test principle is, in the case n > 1, only one of a

number of plausible candidates for constructing con…dence regions for ¦2 : there

is, in this case, no unique optimal invariant test. In fact, we now argue that, for

the case n > 1, a case can be made for conditioning on all n eigenvalues of F0.

The problem of testingH0 : ¦2 = ¦
¤
2 (a particular value of ¦2) can be reduced

by su¢ciency and the fact that the hypothesis does not involve ©; to tests based

on (~¦2; S22); where ~¦2 = (Z 02PZ1Z2)
1
2 ¦̂2. But, for tests based on

³
~¦2; S22

´
, the

problem is invariant (in the sense discussed in Muirhead (1982), Chapter 6) under

the group of transformations G = f(¡; E) : ¡ 2 O(k2); E 2 Gl(n)g (where O(n)

denotes the group of n £ n orthogonal matrices, and Gl(n) the general linear
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group of n £ n non-singular matrices), with group operation (¡1; E1)(¡2; E2) =

(¡1¡2; E1E2), acting on the space of statistics
³
~¦2; S22

´
by (¡;E)(~¦2; S22) =

(¡~¦2E0; ES22E0), and with induced group of transformations on the parameter

space given by (¡; E)(¹¦2;22) = (¡¹¦2E0; E22E0), where ¹¦2 = (Z 02PZ1Z2)
1
2 ¦2.

Under the group of transformations G, a maximal invariant is (f1; :::; fn), where

f1 � ::: � fn are the eigenvalues of F0 in (13). Moreover, the distribution of

(f1; :::; fn) depends only on the eigenvalues of ¤ = 
¡ 1
2

22
¹¦02 ¹¦2

¡ 1
2

22 ; the maximal

invariant under the induced group of transformations on the parameter space.

(Muirhead (1982), Theorem 6.1.12).

Since every invariant test depends only on the maximal invariant, and the

likelihood ratio test is just one member of this class, it seems preferable in the case

n > 1 to condition on the full maximal invariant rather than on any particular

scalar function of (f1; :::; fn). Thus, in the case n > 1, we shall condition on all n

roots (f1; ::::; fn) of F0. In Appendix A we derive the conditional densities of the

OLS and TSLS estimators for ¯0 in (10), conditional on the full maximal invariant

(f1; :::; fn). Since the exact results for the general case of n + 1 endogenous

variables are di¢cult to interpret, in the next Section we analyse in detail the

results for the case n = 1; for which the identi…cation test statistic is simply f1.

4 Conditional Results for the case n = 1

4.1 Conditional Densities and Moments

In this section we analyse the consequences of conditioning on f1 for the OLS

and TSLS estimators of ¯0 in (10), assuming n = 1. Note that, when n = 1,

f1 = ¦̂02Z
0
2PZ1Z2¦̂2=S22 is a scalar, and we shall denote this simply by f . Ideally

we would want to obtain the analogous results for the LIML estimator as well, but

these have so far proved intractable. To simplify the notation, but without loss

of generality, we employ the standardizing transformations described in Phillips

(1983). For either estimator, b, for ¯0, de…ne the transformed statistic

r = (1=222 b¡ ¡1=222 !21)=!; (15)

and the transformed parameter:

¯ = (1=222 ¯0 ¡ ¡1=222 !21)=!; (16)
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where

!2 = !11 ¡ !021¡122 !21: (17)

Note that, in the case n = 1, the squared correlation between Y2 and u is ½2 =

¯2=(1 + ¯2).

The exact conditional densities of rOLS and rTSLS , given f , are given in The-

orem 1. These results are derived in Appendix A, where we also derive the

analogous results for the general case (n > 1). The conditional means, variances,

and mean-square-errors are given in Theorem 2, and the proofs of these results

are given in Appendix B.

Theorem 1 Conditional Densities: Given the model speci…ed in Section 3 with

n = 1, and the standardization described above:

The conditional densities of the OLS and TSLS estimators, given f, are:

pdfOLS (rjf) = [B(
1

2
;
À

2
)]¡1(1 + r2)¡

À+1
2

1X

j=0

g1j (¸; ¯; f)

"
¸f (1 + ¯r)2

(1 + f) (1 + r2)

#j
;

(18)

and

pdfTSLS (rjf ) = [B(
1

2
;
À

2
)]¡1(1+

fr2

1 + f
)¡

À+1
2

1X

j=0

g2j (¸; ¯; f )

"
¸f (1 + ¯r)2

(1 + f )(1 + fr2

1+f
)

#j
;

(19)

where B(a,c) = ¡(a)¡(c)=¡(a + c); À = T ¡ k1; ¸ = ¦02Z
0
2PZ1Z2¦2=222 is a

scalar,

g1j (¸; ¯; f ) =

¡
À+1
2

¢
j

j!
¡
k2
2

¢
j

1F1
³
j + 1

2
; j + k2

2
;¡¸f¯2

1+f

´

1F1
³
À
2
; k2
2
; ¸f
1+f

´ ; (20)

and

g2j (¸; ¯; f) =

¡
À+1
2

¢
j

j!
¡
k2
2

¢
j

f
1
2 1F1

¡
j + 1

2
; j + k2

2
;¡¸¯2

¢

(1 + f)
1
2 1F1

³
À
2
; k2
2
; ¸f
1+f

´ : (21)

In the totally unidenti…ed case (¸ = 0), rOLS and f are independent and

pdfOLS (rjf) = pdfOLS (r) = [B(
1

2
;
À

2
)]¡1(1 + r2)¡

À+1
2 ; (22)
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while, for the TSLS estimator:

pdfTSLS (rjf) = [B(
1

2
;
À

2
)]¡1(f=(1 + f))

1
2 (1 +

fr2

1 + f
)¡

À+1
2 : (23)

Theorem 2 Conditional Moments: For non-negative integers p and q, let

pHq(z) =
1F1(

À
2

¡ p; k2
2
+ q; z)

1F1(
À
2
; k2
2
; z)

; (24)

and

pH
¤
q (z) =

2F2(
À
2

¡ p; 3
2
; 1
2
; k2
2
+ q; z)

1F1(
À
2
; k2
2
; z)

: (25)

In the following expressions, z = ¸f=(1 + f):

(i) the conditional means are:

ETSLS (rjf) =
2¸¯

k2
0H1(z); (26)

EOLS (rjf) =
f

(1 + f )
ETSLS (rjf ) =

2z¯

k2
0H1(z); (27)

(ii) the conditional variances are:

V arOLS (rjf ) = (À ¡ 2)¡1[1H0(z) +
2z¯2

k2
1H

¤
1 (z)]¡ [

2z¯

k2
0H1(z)]

2; (28)

V arTSLS (rjf ) = (f (À¡2)=(1+f))¡1[1H0(z)+
2¸¯2

k2
1H

¤
1 (z)]¡[

2¸¯

k2
0H1(z)]

2; (29)

(iii) the conditional mean-square-errors are:

MSEOLS(r j f) = ¯2 + (À ¡ 2)¡1[1H0(z) +
2z¯2

k2
1H

¤
1(z)]¡

4z¯2

k2
0H1(z); (30)

MSETSLS(r j f) = ¯2 + (f(À ¡ 2)=(1 + f ))¡1[1H0(z) +
2¸¯2

k2
1H

¤
1 (z)]

¡4¸¯
2

k2
0H1(z): (31)
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Remarks

1. When the structural equation (10) is totally unidenti…ed the OLS estimator

is independent of f , but this is not the case for the TSLS estimator. In general,

conditioning a¤ects the properties of both the OLS and the TSLS estimators.

More precisely, conditioning makes the functional forms of the densities of the

OLS and TSLS estimators di¤erent (even though their unconditional densities

have the same functional form), and thus has an impact on the choice between

these estimators (see below).

2. The leading terms in the densities of the OLS and TSLS estimators (i.e.,

equations (22) and (23) respectively) are both proportional to a Student-t den-

sity with À degrees of freedom, so that integer (conditional) moments exist up to

order À¡1, and the variances are (À¡2)¡1 and (f(À¡2)=(1+f))¡1 respectively.

For the TSLS estimator unconditional integer moments exist only up to order

k2 ¡ 1.

3. As in the case of the unconditional densities (see Phillips (1983)), the condi-

tional densities pdfOLS (rjf) and pdfTSLS (rjf ) are not symmetric about ¯, except

when ¯ = 0.

4. From equation (27) it is clear that jEOLS (rjf )j < jETSLS (rjf)j, that is, the

conditional mean of the OLS estimator is always closer to the origin than that

of the TSLS estimator, by a factor that depends on f . We shall see shortly that,

as this result suggests, the OLS estimator can certainly conditionally dominate

the TSLS estimator for small values of both ¯ and f: Mean-squared-error com-

parisons of the two estimators are given in the next subsection.

5. As f goes to in…nity, for …xed parameter values, the densities and the MSE’s

of the OLS and TSLS estimators tend to the same function. This is evidence

that if there is a clear sign that the model is identi…ed, then the OLS and TSLS

estimators are equivalent in small samples. This, again, stresses the importance

of using the identi…cation test statistic to give a feeling for the robustness of the

results to the choice of the estimator.
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4.2 Numerical properties

The conditional densities of the OLS and TSLS estimators are characterized by

the three known quantities (À = T ¡k1, k2, f), and the two unknown parameters

(¸, ¯): Figures 2 and 3 illustrate the e¤ects of conditioning. Plots of the densities

given in Theorem 1 have been drawn for ¯ = 0:35, ¸ = :5 and T = 20, k1 =

3, k2 = 4 (this choice of values for the parameters is based on the results by

Anderson, Morimune and Sawa (1983)). To avoid values of f which are unlikely

(with this value of ¸), we choose four values (fi, i = 1; :::; 4), f0 = 0; f5 = 1,

such that Pr ffi < f < fi+1g = 0:2 for i = 0; :::; 4: The …gures look very similar

for other values of ¸, and for other values of ¯.
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Figure 2: Marginal and Conditional Densities: OLS Estimator

The …gures show the marginal densities with a solid line. The dashed lines

represent the conditional densities, with the …nest line corresponding to the den-

sity conditional on f1, the coarsest line to the density conditional on f4. Figure

2 displays the conditional and marginal densities for the OLS estimator. Clearly,

the properties of the OLS estimator are not signi…cantly a¤ected by conditioning

on the identi…cation test statistic. Figure 3 shows the densities for the TSLS

estimator. In this case the impact of conditioning is appreciable. It is clear that

conditioning on the identi…cation test statistic has an imperceptible e¤ect on the

mean of the TSLS estimator, but quite a dramatic e¤ect on its variance. This
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again supports the interpretation of the identi…cation test statistic as index of

precision.
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Figure 3: Marginal and Conditional Densities: TSLS Estimator

To quantify the di¤erence between the conditional and the unconditional vari-

ances we report in Tables 2 and 3 the ratio of the conditional to the unconditional

variances, i.e. V ar(rjf)
V ar(r)

, for both estimators and for various values of ¸ and f .

Speci…cally, for fi, i = 0; :::; 10 such that Pr ffi < f < fi+1g = 0:1; i = 0; :::; 9;

f0 = 0, f10 = 1. The other parameters have been set at the same values

as before, i.e. T = 20, k1 = 3, k2 = 4. Table 2 shows that the di¤erence

between V arOLS (rjf) and V arOLS (r) is negligible. On the other hand, Table

3 reinforces the impression gained from Figure 3 that for TSLS the di¤erence

between V arTSLS (rjf) and V arTSLS (r) can be very large, especially for small

values of the noncentrality parameter. Notice that small observed values of f

imply, as expected, lower conditional precision for the estimator (relative to the

unconditional), but also that larger observed values of f imply higher conditional

precision. It is also clear that for small values of f the conditional precision of

the TSLS estimator is poor, but for large f it is quite good.
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Table 2: Ratio of Conditional to unconditional variance: OLS

¸ = 0:05 ¸ = :5 ¸ = 5 ¸ = 10 ¸ = 25
f1 1.004 1.032 1.115 1.112 1.080
f2 1.003 1.023 1.059 1.057 1.044
f3 1.003 1.015 1.024 1.024 1.020
f4 1.00 1.008 0.997 0.998 1.002
f5 1.00 1.000 0.973 0.976 0.987
f6 0.999 0.993 0.951 0.956 0.974
f7 0.997 0.985 0.931 0.938 0.960
f8 0.997 0.975 0.910 0.918 0.946
f9 0.996 0.963 0.885 0.894 0.930

Notes: each entry is calculated as V arOLS (rjf )
V arOLS (r)

. Pr ffi < f < fi+1g = 0:1.
T = 20, k1 = 3, k2 = 4, ¯ = 0:35.

Table 3: Ratio of Conditional to unconditional variance: TSLS

¸ = 0:05 ¸ = :5 ¸ = 5 ¸ = 10 ¸ = 25
f1 1.821 1.810 1.533 1.365 1.185
f2 1.193 1.196 1.159 1.131 1.078
f3 0.919 0.915 0.974 1.006 1.013
f4 0.746 0.744 0.854 0.919 0.966
f5 0.623 0.625 0.765 0.851 0.927
f6 0.529 0.531 0.691 0.794 0.893
f7 0.451 0.455 0.626 0.742 0.861
f8 0.381 0.385 0.567 0.691 0.828
f9 0.312 0.316 0.503 0.634 0.790

Notes: each entry is calculated as V arTSLS (rjf )
V arTSLS(r)

. Pr ffi < f < fi+1g = 0:1.
T = 20, k1 = 3, k2 = 4, ¯ = 0:35.
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In practice the variance, whether conditional or unconditional, depends on

unknown parameters (in the cases of interest here, ¸ and ¯), and the reported

variance is typically calculated by simply replacing these by estimates. The nat-

ural (unrestricted maximum likelihood) estimator for ¸ is simply f=2: Replac-

ing ¸ by f=2 in the variance ratios V arOLS(r j f)=V arOLS(r) and V arTSLS(r j
f)=V arTSLS(r) means that these are both functions of ¯2 alone, and ¯ here can

be interpreted as the value of the estimator, rather than the unknown parame-

ter. Thus, one can easily examine the e¤ect of conditioning on the estimated, as

distinct from the actual, variances of the two estimators. The results of doing

so are in broad agreement with the message conveyed in Tables 2 and 3: for the

OLS estimator, the ratio of estimated variances always remains close to unity for

all values of f and ¯;while for the TSLS estimator the ratio can be either much

greater than one (when f is small), or much less than one (when f is large).

Thus, the estimated conditional variance continues to re‡ect, more adequately

than the estimated unconditional variance, the precision of the TSLS estimator

for the sample actually available.

Finally, since both estimators are (conditionally and unconditionally) biased,

it is of interest to compare their conditional mean-square-errors, given f . From

equations (30) and (31), the di¤erence between the conditional mean-square-

errors is:

¢MSE(r j f) =MSEOLS(r j f)¡MSETSLS(r j f)

= (1¡ w)[4¸¯
2

k2
0H1(z)¡ [w(À ¡ 2)]¡11H0(z)¡

2¸(1 + w)¯2

wk2(À ¡ 2) 1H
¤
1(z)]

(32)

where w = f=(1 + f): Using the contiguity relations for the con‡uent hyperge-

ometric function (Abramowitz and Stegun (1965), p.506), this can be expressed

entirely in terms of the function 1H0. We …nd, after some tedious algebra,

¢MSE(r j f) = [(1¡ w)(1 + ¯2)=w][½2(2 + (1 + w)(k2 ¡ 1)
w(À ¡ k2 ¡ 2) )

¡1H0(z)

½
½2(2 +

(1 + w)(k2 ¡ 1)
w(À ¡ k2 ¡ 2) ) +

(1¡ ½2)
(À ¡ 2) +

2¸½2(1 + w)(À ¡ 3)
(À ¡ 2)(À ¡ k2 ¡ 2)

¾
] (33)

where ½2 = ¯2=(1 + ¯2) is the squared correlation between the right-hand-side

endogenous variable and the error term in (10). Clearly, ¢MSE is negative when
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½2 = 0, i.e., ¯ = 0, so that OLS conditionally dominates TSLS when there is

no correlation between the right hand side endogenous variable and the error

term in the structural equation. Also, it is clear that ¢MSE ¡! 0 as w ¡! 1

(i:e:; f ¡! 1), so that there is, conditionally, nothing to choose between these

estimators when the sample identi…ability test statistic is large. In Figures 4a -

4f we plot conditional MSE indi¤erence curves (along which ¢MSE = 0) in the

(w; ½2) plane, for various values of (À; k2), and, on each graph, several values of

¸. OLS dominates to the south west of each curve, TSLS to the north east.

Figure 4

Conditional Mean-square-error Indi¤erence Curves: OLS/TSLS

Vertical axis: ½2 = ¯2=(1 + ¯2); Horizontal axis: w = f=(1 + f)

Plotted for ¸ = :05 (top), ¸ = :5; ¸ = 1:0, and ¸ = 10 (bottom)

OLS dominates to the south west of each curve.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 4a: À = 30; k2 = 4:
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Figure 4b: À = 30; k2 = 10:
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Figure 4c: À = 80; k2 = 4:
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Figure 4d: À = 80; k2 = 10:
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Figure 4e: À = 80; k2 = 20:
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Figure 4f: À = 80; k2 = 30:

Several important conclusions can be drawn from Figure 4:

(i) In an actually weakly identi…ed model (¸ = :05) OLS dominates TSLS over a

large range of (w; ½2) values. Even quite strong sample evidence of identi…cation

(i:e:; a moderate value of f) does not imply superiority of the TSLS estimator.

(ii) If the sample evidence (f ) indicates that the model is only weakly identi…ed,

OLS is the preferred estimator.

(iii) The greater the degree of overidenti…cation (k2), the larger the region over

which OLS dominates TSLS, but, ceteris paribus, a larger sample size increases

the extent of the region over which TSLS dominates.

Although not immediately obvious from (33), it is also true that, while TSLS

can conditionally dominate OLS, the conditional MSE advantage of TSLS is

never great, but, particularly when the identi…ability test statistic f is small,

OLS can be dramatically better than TSLS. We conclude that, when the data

only weakly indicate that the model is identi…ed, OLS is certainly the preferred

estimator of these two. If the data are moderately favourable to the identi…ability

of the model, TSLS may be slightly superior, but, …nally, if the data strongly

support the identi…cation of the model there is nothing to choose between the

two estimators.
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5 Concluding Remarks

In a single structural equation model the possibility that the model is unidenti…ed,

or is arbitrarily close to being unidenti…ed, cannot be ruled out a priori. Even

though it is well known that both the small sample and asymptotic properties

of the usual estimators break down in such a case, no practical procedure has

been developed to take account of this possibility. In this paper we have argued

that, in possibly unidenti…ed models, (i) inference should be made conditional on

an identi…cation test statistic, and (ii) the identi…cation test statistic should be

considered as an index of precision for inference.

We have derived the exact distributions of the OLS and TSLS estimators

conditional on an identi…cation test statistic, and shown that conditioning makes

the functional forms of the densities of the OLS and TSLS estimators di¤erent. In

the extreme case of a totally unidenti…ed model the OLS estimator is independent

of the identi…cation test statistic, but that is not the case for the TSLS estimator.

The variances of the OLS and TSLS estimators are a¤ected by conditioning

more than their means, and, for the TSLS estimator, conditioning can have a

substantial e¤ect on the apparent precision of the estimator, in both directions.

Conditional mean-square-error comparisons of the two estimators imply that,

particularly when the data suggests only weak identi…cation, OLS is the preferred

estimator, and that, when properly conditioned, there is little to choose between

these two estimators. It would obviously be of interest to include the LIML

estimator in these comparisons, but technical problems have so far prevented us

from doing so.

The practical implications of these results are important. They show that it

is very important to report the identi…cation test statistic, both because it tells

us directly how con…dent we can be that the model is identi…ed, and because it

indicates the precision of the estimator of the structural parameters of interest

(especially for the TSLS estimator). We believe that it should become a standard

practice to report these statistics in empirical work, and to use the (estimated)

conditional variance as the appropriate measure of precision. Moreover, the exact

results obtained here (under our admittedly very special assumptions) can be

expected to hold as approximations in much more general models, such as time

series models, in much the same way that Phillips (1989) and Staiger and Stock

(1997) extend their analyses to broader classes of models.
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Finally, although we have focused on point estimation, the argument that

inference in this model should be conditioned on the identi…cation test statistic

can be extended to hypothesis testing, including both tests on the structural

parameters, and tests for exogeneity. These problems remain for future work.
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APPENDIX A: Conditional Densities

In this Appendix we make extensive use of the notation and multivariate

integration techniques explained in detail in Muirhead (1982), especially Chapters

2 and 7. To keepthe derivations as brief as possible, we ask the reader to refer to

these sources for details of the notation and main results that are used. See also

Hillier (1985), and Hillier and Skeels (1993).

Let

X = (Z 02PZ1Z2)
1
2 ¦̂2

¡ 1
2

22 ;

M = E(X) = (Z 02PZ1Z2)
1
2¦2

¡ 1
2

22 ;

and R = 
¡ 1
2

22 S22
¡ 1
2

22 : The maximal invariant for the testing problem of interest

consists of the n characteristic roots of F0 in equation (14) in the text, or, equiva-

lently, of F = R¡
1
2X 0XR¡

1
2 . Since X » N(M; Ik2  In); and R » Wn(À¡ k2; In),

and X and R are independent, the marginal joint density of the roots of F is

given by Muirhead (1982), Theorem 10.4.2 as:

pdf(F ) = C2etrf¡¤g jF j
k2
2
¡p jIn + F j¡ À

2
1F

(n)
1 (

À

2
;
k2
2
; ¤; F (In+F )

¡1)
Y

i<j

(fi¡ fj)

(A1)

where ¤ = 1
2
M 0M , F = diagff1; f2; ::::; fng, and

C2 =
¼
n2

2 ¡n(
À
2
)

¡n(
n
2
)¡n(

À¡k2
2
)¡n(

k2
2
)
:

Note that here and below we use F to denote both the original matrix variate,

and the diagonal matrix containing the characteristic roots of that matrix. This,

we hope, will economise on notation without confusing the reader too much.

Using the de…nitions of r and ¯ in (5) and (6) in the text, and the assumptions

made in Section 3, it is straightforward to check that:

rOLS j X;R s N((R +X 0X)¡1X 0M¯; (R+X 0X)¡1); (A2)

and

rTSLS j X s N((X 0X)¡1X 0M¯; (X 0X)¡1): (A3)

Notice that in the totally unidenti…ed case M = 0 and neither the conditional

densities (A2) and (A3), nor those of the conditioning variates (X;R), depend on
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any parameters of the model. Hence, unconditionally, the densities of rOLS and

rTSLS are independent of the model parameters, and those of the unstandardised

bOLS and bTSLS depend only on ; as noted in the introduction.

From (A2) and (A3), it is straightforward to obtain the joint density of

(r;X;R) for both of these estimators. To obtain the joint density of (r; F )

in both cases we need to transform to a set of new variates including (r; F ), and

then integrate out the redundant variables. We have, as the starting points:

pdf
OLS
(r;X;R) = C1etrf¡¤g jRj

À¡k2
2

¡p jR+X 0X j
1
2 etrf¡1

2
(R+X 0X)(In+ rr

0)g

etrfX 0M(In + ¯r
0)g expf¡1

2
¯0M 0X(R +X 0X)¡1X 0M¯g; (A4)

and

pdfTSLS(r;X;R) = C1etrf¡¤g jRj
À¡k2
2

¡p jX 0X j
1
2 etrf¡1

2
Rgetrf¡1

2
X 0X(In+rr

0)g

etrfX 0M(In + ¯r
0)g expf¡1

2
¯0M 0X(X 0X)¡1X 0M¯g; (A5)

where p = (n+ 1)=2 and

C1 = [(2¼)
n(k2+1)

2 2
n(À¡k2)

2 ¡n(
À ¡ k2
2

)]¡1:

Conditional density of the OLS estimator

We deal with the OLS case, equation (A4), …rst. The characteristic roots of F

are invariant under the transformations X ¡! KXPH; R ¡! H 0P 0RPH; with

K 2 O(k2); P 2 Gl(n); and H 2 O(n). Choosing P = (In + rr0)¡
1
2 , making

these transformations in (A4) (the Jacobian is (1 + r0r)¡
k2+n+1

2 ), and averaging

over O(k2) and O(n), the joint density in (A4) is replaced by:

C1etrf¡¤g(1 + r0r)¡ (À+1)
2 jRj

(À¡k2)
2

¡p jR+X 0X j 12 etrf¡1
2
(R+X 0X)g

1X

j:k=0

X

®;[k];Á

C®;[k]Á (1
2
MGG0M 0;¡1

2
M¯¯0M 0)C®;[k]Á (1

2
XX 0; X(R +X 0X)¡1X 0)

j!k!(n
2
)®CÁ(Ik2)

;

(A6)

where we have temporarily put G = (In + ¯r0)(In + rr0)¡
1
2 ; and we have made

extensive use of results from Davis (1979) and Chikuse and Davis (1986). The

integral over O(n) is a direct application of Muirhead (1982), Theorem 7.4.1,
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while the integral over O(k2) uses Davis (1979), equation (1.2). The notation

used in (A6) is explained in detail in the papers referred to, and in Hillier (1984).

Next, set W = XR¡
1
2 , so that F = W 0W; and (dX) = jRj

k2
2 (dW ); and

evaluate the integral over R > 0 using Davis (1979), equations (2.12) and (2.1),

to obtain:

C11etrf¡¤g(1 + r0r)¡ (À+1)
2 jIn +W 0W j¡

À
2

1X

j;k=0

X

®;[k];Á

µ
®;[k]
Á (À+1

2
)®(

n
2
)Á

j!k!(n
2
)®(

k2
2
)ÁCÁ(In)

£C®;[k]Á (¤(In + ¯r
0)(In + rr

0)¡1(In + r¯
0);¡¤¯¯ 0)CÁ(W 0W (In +W

0W )¡1);

(A7)

where C11 = 2
n(À+1)

2 ¡n(
À+1
2
)C1, and we have used the special structure of the

arguments of the invariant polynomials in (A6) to simplify the expressions. We

now transform W ¡! (V; F ); with F = W 0W and V = W (W 0W )¡
1
2 ; so that

V 0V = In, and (dW ) = 2¡n jF j
k2
2
¡p (dF )(V 0dV ); where (V 0dV ) denotes Haar

measure on the Stie¤el manifold (Muirhead (1982), Chapter 2). Since (A7) does

not depend on V we may integrate it out using Muirhead (1982), Theorem 2.1.15,

leaving a function only of F:

Finally, we transform F to the diagonal matrix containing its characteristic

roots (which we continue to denote by F ), and an orthogonal matrix, L say, con-

taining its characteristic vectors - see Muirhead (1982) Section 3.2.5. Integrating

over L 2 O(n) is straightforward since (A7) is not a function of L. We thus

obtain:

pdfOLS(r; F ) = C¤1etrf¡¤g(1 + r0r)¡ (À+1)
2 jIn + F j¡ À

2 jF j
k2
2
¡p Y

i<j

(fi ¡ fj)

1X

j;k=0

X

®;[k];Á

µ®;[k]Á (À+1
2
)®(

n
2
)Á

j!k!(n
2
)®(

k2
2
)ÁCÁ(In)

C
®;[k]
Á (¤(In + ¯r

0)(In + rr
0)¡1(In + r¯

0);¡¤¯¯ 0)CÁ(F (In + F )¡1); (A8)

where

C¤1 =
¡n(

À+1
2
)

¼
n
2¡n(

À
2
)
C2;

The conditional density pdf(r j F ) is obtained by simply dividing (A8) by (A1),

giving:

pdfOLS(r j F ) = ¡n(
À+1
2
)

¼
n
2 ¡n(

À
2
)
(1 + r0r)¡

(À+1)
2

1X

j;k=0

X

®;[k];Á

µ
®;[k]
Á (À+1

2
)®(

n
2
)Á

j!k!(n
2
)®(

k2
2
)ÁCÁ(In)
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gÁ(F ; ¤)C
®;[k]
Á (¤(In + ¯r

0)(In + rr
0)¡1(In + r¯

0);¡¤¯¯0) (A9)

where

gÁ(F ; ¤) =
CÁ(F (In + F )¡1)

1F
(n)
1 (À

2
; k2
2
; ¤; F (In + F )¡1)

: (A10)

Note that, in the totally unidenti…ed case M = 0, only the …rst line of (A8)

remains, so that, when M = 0; r and F are independent. Equation (22) in the

text gives this result for the case n = 1. Also, when n = 1, it is straightforward

to check that (A9) reduces to equation (18) in the text: both arguments of the

polynomials C®;[k]Á (¢; ¢) that occur in (A9) are scalars, and, in the case n = 1,

gÁ(F ; ¤) =
( f1
1+f1

)j+k

1F1(
À
2
; k2
2
; ¸f
1+f
)

Conditional density of the TSLS estimator

Starting now from (A5), since (A5) does not depend on R, and R is independent

of X , we …rst transform X ¡! (V;Q), with V = X(X 0X)¡
1
2 and Q = X 0X; so

that (dX) = 2¡n jQj
k2
2
¡p (dQ)(V 0dV ). F depends on X only through Q, so we

need only the joint density pdfTSLS(r;Q); obtained by integrating over V 0V = In.

But, the integral over the Stie¤el manifold is invariant under the transformations

M(In + ¯r0)Q
1
2 ¡! M(In + ¯r0)Q

1
2H;H 2 O(n): Hence, averaging over O(n),

the term etrfV 0M(In + ¯r0)Q1
2g that occurs in (A5) may be replaced by

0F1(
n

2
;
1

4
V 0M(In + ¯r

0)Q(In + r¯
0)M 0V ):

Next, set ¹F = Q¡
1
2RQ¡

1
2 , and note that the characteristic roots of ¹F are those of

F¡1. The Jacobian of the tranformation (R;Q) ¡! ( ¹F;Q) is jQjp, so the joint

density of (r;Q) may be expressed in the form:

2¡nC1etrf¡¤(In + ¯¯0)g
¯̄
¹F
¯̄ (À¡k2)

2
¡p jQj

(À+1)
2

¡p etrf¡1
2
Q(In + rr

0 + ¹F )g

Z

V 0V=In
expf1

2
¯0M 0(In ¡ V V 0)M¯g

0F1(
n

2
;
1

4
V 0M(In + ¯r

0)Q(In + r¯
0)M 0V )(V 0dV ) (A11)

Evaluating the Laplace transform, and integrating over V 0V = In using results

from Hillier (1985), we obtain:

C¤11etrf¡¤(In + ¯¯0)g
¯̄
¹F
¯̄ (À¡k2)

2
¡p ¯̄
In + rr

0 + ¹F
¯̄¡ (À+1)

2
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1X

j;k=0

X

®;[k];Á

(À+1
2
)®(

k2¡n
2
)k

j!k!(k2
2
)Á

µ®;[k]Á

£C®;[k]Á (¤(In + ¯r
0)(In + rr

0 + ¹F )¡1(In + r¯
0);¤¯¯0) (A12)

where C¤11 = 2
n(À+1)

2 ¼
nk2
2 ¡n(

À+1
2
)C1=¡n(

k2
2
):

Note, at this point, that in the totally unidenti…ed case (M = 0); the second

line of (A12) is redundant, so the joint density of (r; ¹F ) becomes simply:

C¤11
¯̄
¹F
¯̄ (À¡k2)

2
¡p ¯̄
In + rr

0 + ¹F
¯̄¡ (À+1)

2 : (A13)

Transforming to ~F = ¹F¡1 (which has the same characteristic roots as F ), the

Jacobian is
¯̄
¯ ~F

¯̄
¯
¡(n+1)

, and it is clear at once that, unlike the OLS case, rTSLS
and F are not independent when the model is totally unidenti…ed. For the case

n = 1; equation (A13), together with (A1), immediately yield equation (23) in

the text.

In the general case (n > 1) (but still with M = 0) we need to transform ~F to

its characteristic roots and vectors in (A13), and then integrate over O(n). To

obtain a convergent expansion from this step we …rst write:

¯̄
In + rr

0 + ¹F
¯̄
= (1 + r0r)

¯̄
¯In + ~F¡1

¯̄
¯ (1¡ r0(In + ~F )¡1r

(1 + r0r)
)

Using this in (A13), replacing ~F by LFL0, with L 2 O(n), and integrating over

O(n), we obtain, after a little simpli…cation, for the case M = 0,

pdfTSLS(r;F ) =
¡n(

À+1
2
)

¼
n
2¡n(

À
2
)
C2(1 + r

0r)¡
À+1
2 jF j

k2¡n
2 jIn + F j¡À+1

2

Y

i<j

(fi ¡ fj)

2F1(
1

2
;
À + 1

2
;
n

2
;

r0r

(1 + r0r)
(In + F )

¡1): (A14)

Hence, for this totally unidenti…ed case,

pdfTSLS(r j F ) =
¡n(

À+1
2
)

¼
n
2¡n(

À
2
)
(1 + r0r)¡

À+1
2 jF j 12 jIn + F j¡ 1

2

Y

i<j

(fi ¡ fj)

2F1(
1

2
;
À + 1

2
;
n

2
;

r0r

(1 + r0r)
(In + F )

¡1): (A15)

This reduces to equation (23) in the text in the special case n = 1.

In the case n = 1 (but ¤ ´ ¸ 6= 0) the joint density of (r; f1) is easily

obtained directly from (A12) by transforming ¹f1 ¡! f1 = ¹f¡1and rearranging
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slightly to give the result in Theorem 1 in the text. To complete the derivation

in the general case we need to transform ¹F ¡! ~F = ¹F¡1 in (A12), then from
~F to LFL0 as above, and …nally integrate over O(n). This, unfortunately, is not

straightforward, essentially because of manner in which ¹F appears in equation

(A12). We omit the details of this …nal step - they can be found in Forchini

(1998).

APPENDIX B: Conditional Moments; n = 1.

Remark on notation: in this Appendix, which deals entirely with the case

n = 1, we use lower case versions of the symbols used in Appendix A to denote

the corresponding quantities when n = 1, except for the matrix R, whose (scalar)

counterpart will here be denoted by t. Thus, in particular, X ¡! x; M ¡! m;

V ¡! v; Q ¡! q; and R ¡! t. We also, for the case n = 1, denote the

identi…ability test statistic simply by f (rather than f1).

From (A2) and (A3):

E(rOLS j x; t) = ¯ x0m

x0x+ t
; (B1)

E(rTSLS j x; t) = ¯x
0m

x0x
(B2)

V ar(rOLS j x; t) = (x0x+ t)¡1; (B3)

V ar(rTSLS j x; t) = (x0x)¡1: (B4)

Transforming x ¡! (v; q), with v = x(x0x)¡
1
2 and q = x0x; then from (q; t) ¡!

(f; t); with f = q=t; these become:

E(rTSLS j v; t; f ) = ¯p
tf
(v0m); (B5)

E(rOLS j v; t; f) = f

1 + f
E(rTSLS j v; t; f); (B6)

and

V ar(rTSLS j v; t; f) = (tf )¡1; (B7)

V ar(rOLS j v; t; f) = [t(1 + f)]¡1 = f

1 + f
V ar(rTSLS j v; t; f ) (B8)
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so that

E(r2OLS j v; t; f) = [t(1 + f )]¡1[1 + ¯2f

1 + f
(v0m)2]; (B9)

and

E(r2TSLS j v; t; f) = (tf )¡1[1 + ¯2(v0m)2]: (B10)

It is straightforward to show that

pdf (v; t j f) = c1h(f ;¸)t
À
2
¡1 expf¡1

2
t(1 + f)g expf

p
tf (v0m)g (B11)

with c1 = ¡(k22 )=2
À
2
+1¼

k2
2 ¡(À

2
) and

h(f ;¸) =
(1 + f )

À
2

1F1(
À
2
; k2
2
; ¸f
1+f
)
: (B12)

Hence, to obtain the conditional moments, given f , we need to multiply the

expressions in (B5) and (B6) and, for the second moments, in (B9) and (B10),

by pdf(v; t j f ) in (B11), and then integrate over v0v = 1 and _t > 0: To evaluate

the integrals of the terms (v0m) and (v0m)2 that occur, we use:

Lemma B1: If À and m are k2 £ 1;

Z

v0v=1
(v0m) expfav0mg(v0dv) = V (k2)

2¸a

k2
0F1

µ
k2
2
+ 1;

1

2
¸a2

¶
; (B13)

Z

v0v=1
(v0m)2 expfav0mg(v0dv) = V (k2)[

2¸

k2
0F1(

k2
2
+ 1;

1

2
¸a2)

+
4¸2a2

k2(k2 + 2)
0F1(

k2
2
+ 2;

1

2
¸a2)]

=
2¸V (k2)

k2
1F2(

3

2
;
1

2
;
k2
2
+ 1;

1

2
¸a2); (B14)

where ¸ = m0m=2 and V (k2) = 2¼
k2
2 =¡(k2

2
) is the surface content of the unit

sphere in k2 dimensions.

Proof: The integral
Z

v0v=1
(v0m)r expfav0mg(v0dv)
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is the coe¢cient of zr=r! in the expansion of
Z

v0v=1
expf(a+ z)v0mg(v0dv) = V (k2)0F1(

k2
2
;
1

2
¸(a+ z)2):

Equations (B13) and (B14) follow by simply evaluating those coe¢cients for the

cases r = 1 and r = 2: The second expression for the result in (B14) is easily

obtained from the …rst on using the fact that (c+ 1)j=(c)j = (1 + j=c).

From (B5), (B11), and (B13) (with a =
p
ft), we obtain:

E(rOLS j f) = 2¸f¯

k2(1 + f)

1F1(
À
2
; k2
2
+ 1; ¸f

1+f
)

1F1(
À
2
; k2
2
; ¸f
1+f
)

(B15)

and the corresponding result for E(rTSLS j f) follows from (B6). To simplify the

notation for subsequent results, de…ne, for non-negative integers p and q,

pHq(z) =
1F1(

À
2

¡ p; k2
2
+ q; z)

1F1(
À
2
; k2
2
; z)

(B16)

so that, setting z = ¸f=(1 + f ),

E(rOLS j f ) = 2z¯
k2

0H1(z): (B17)

Similarly, using (B14) in (B9) and (B10) yields:

E(r2OLS j f) = (À ¡ 2)¡1[1H0(z) +
2z¯2

k2
1H1(z)] +

4z2¯2

k2(k2 + 2)
0H2(z)

= (À ¡ 2)¡1[1H0(z) +
2z¯2

k2
1H

¤
1 (z)] (B18)

and

E(r2TSLS j f ) = 1 + f

f (À ¡ 2)[1H0(z) +
2¸¯2

k2
1H1(z)] +

4¸2¯2

k2(k2 + 2)
0H2(z)

=
1 + f

f (À ¡ 2)[1H0(z) +
2¸¯2

k2
1H

¤
1 (z)]; (B19)

where

pH
¤
q (z) =

2F2(
À
2

¡ p; 3
2
; 1
2
; k2
2
+ q; z)

1F1(
À
2
; k2
2
; z)

: (B20)

The conditional variances and mean-square-errors given in Theorem 2 in the text

follow immediately from these results.
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