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Abstract
The quasi-maximum likelihood estimator for the autoregressive parameter in a spatial
autoregression usually cannot be written explicitly in terms of the data. A rigorous anal-
ysis of the first-order asymptotic properties of the estimator, under some assumptions
on the evolution of the spatial design matrix, is available in Lee (2004), but very little
is known about its exact or higher-order properties. In this paper we first show that the
exact cumulative distribution function of the estimator can, under mild assumptions,
be written in terms of that of a particular quadratic form. Simple examples are used
to illustrate important exact properties of the estimator that follow from this represen-
tation. In general models a complete exact analysis is not possible, but a higher-order
(saddlepoint) approximation is made available by the main result. We use this approx-
imation to construct confidence intervals for the autoregressive parameter. Coverage
properties of the proposed confidence intervals are studied by Monte Carlo simulation,
and are found to be excellent in a variety of circumstances.
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1 Introduction

Spatial autoregressive processes have enjoyed considerable recent popularity in modelling
cross-sectional and panel data in economics, social network analysis, and in several
other disciplines.1 In most applications to date, such models are based on a fixed
spatial weights matrix W whose elements reflect the modeler’s assumptions about the
pairwise interactions between the observational units. A scalar autoregressive parameter
λ measures the strength of this cross-sectional interaction, and is often of direct interest.
For example, in social interaction analysis measuring the strength of network effects may
be important for policy purposes. This paper is concerned with the properties of the
quasi- (or pseudo-) maximum likelihood estimator (QMLE) for this parameter that is
implied by assuming a Gaussian likelihood.

The particular class of spatial autoregressive models we discuss have the form

y = λWy +Xβ + σε, (1.1)

where y is the n × 1 vector of observed random variables, X is a fixed n × k matrix
of regressors of full column rank, with n > k + 1, ε is a mean-zero n × 1 random
vector, β ∈ Rk and σ > 0 are parameters. We refer to model (1.1) simply as the SAR
(spatial autoregressive) model; it is also known as the spatial lag model, or as the mixed
regressive, spatial autoregressive model. The matrices X and W are assumed to be
non-stochastic; alternatively, if they were random and exogenous, one could interpret
inferential results as conditional on the two matrices. Some of the columns of X may be
spatial lags of some other columns, to allow for the estimation of, in the terminology of
social network analysis, contextual effects.2 The model is said to be pure if the regression
component (Xβ) is missing. The notation in (1.1) may also be used for a fixed effects
panel data model, in which case W is a block-diagonal matrix and the fixed effects,
along one or two of the panel dimensions, are incorporated into Xβ (see, e.g., Lee and
Yu, 2010).

There is a vast literature on maximum likelihood estimation of model (1.1), an
early reference being Ord (1975). A rigorous first-order asymptotic analysis of the
estimator was given only much later, in an influential paper by Lee (2004). Bao and
Ullah (2007) provide analytical formulae for the second-order bias and mean squared
error of the MLE for λ in the Gaussian pure SAR model, and Bao (2013) and Yang
(2015) extend such approximations to the case when exogenous regressors are included
and when ε is not necessarily Gaussian. Robinson and Rossi (2015) investigate higher-
order (Edgeworth) refinements for the asymptotic distribution of the QMLE in a fixed
effects spatial panel data model. Several other papers have studied the performance of
the QMLE by simulation, particularly in relation to competing estimators such as the
two-stage least squares (2SLS) estimator or more general GMM estimators.

Because the QMLE for λ is generally unavailable in closed form, even the calculation
of the QMLE has been regarded as problematic in this model, see LeSage and Pace,
(2009, Chapters 3 and 4), let alone the study of its exact properties. The starting point
for the present paper is the observation that the profile likelihood for λ is, under mild

1For an introduction to spatial autoregressions see, e.g., Cliff and Ord (1973) and LeSage and Pace
(2009).

2Technically, the case of contextual effects is included in equation (1.1), but we will see later that
the presence of such effects can affect the accuracy of the asymptotic approximation to the distribution
of the QMLE for λ.
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assumptions, single-peaked on the usual parameter space for λ. This fact is important
in itself, because it simplifies the computation of the estimator. It also implies that the
cdf of the QMLE for λ can be written down in terms of the cdf of a family of quadratic
forms. Such a representation of the cdf can provide exact distribution properties of
the estimator in sufficiently simple models, and some examples of this are given. The
examples illustrate important distribution properties of the QMLE for λ, some of which
have aspects in common with that for serial correlation coefficients (von Neumann,
1941, Koopmans, 1942). In particular, the cdf can be non-analytic at certain points
of its domain, and can have a different functional form in the intervals between those
points. The exact results are derived, for simplicity, under Gaussian assumptions on ε,
but we note that an invariance property of the estimator implies that these hold under
all scale mixtures of the normal distribution for y. The representation result for the cdf
of the QMLE also permits an asymptotic analysis for the estimator in models where
Lee’s (2004) assumptions are not satisfied.

However, as the examples also illustrate, exact results for general models with ar-
bitrary (W,X) are either intractable, or too complex to be useful for inference. The
explicit representation for the cdf is nevertheless useful, because it provides access to
a simple higher-order (saddlepoint) approximation to the distribution. We explain this
in Section 6, and then go on to use it to produce confidence intervals for λ. These
intervals are easily implemented, and Monte Carlo simulation suggests that they have
very accurate coverage rates, even under conditions which might be expected to pro-
duce difficulties (for example, incidental parameters, a dense spatial design matrix W ,
non-symmetric error distribution).

The rest of the paper is organized as follows. Section 2 discusses some assumptions,
and introduces some examples that are used to illustrate the theoretical results. Section
3 derives the key properties of the profile log-likelihood for λ. Section 4 presents the
representation of the cdf of the QMLE, and discusses a number of consequences. Section
5 applies the main results first to the case of a Gaussian pure SAR model with symmetric
W , and then to the examples introduced earlier. Section 6 presents and evaluates the
saddlepoint approximation that emanates from the main result, and Section 7 concludes.
Proofs are relegated to either Appendix B or the online Supplementary Material. The
Supplementary Material also contains various technical material related to the paper.

2 Assumptions and examples

2.1 The parameter space for λ

In order for model (1.1) to uniquely determine the vector y (given Xβ and ε) it is
necessary and sufficient that the matrix Sλ := In − λW is nonsingular, or, equivalently,
that λ 6= ω−1, for all nonzero real eigenvalues ω of W .3 This we assume throughout, but
in practice the parameter space for λ is usually restricted much further, as we discuss
next. Throughout the paper, we maintain the following assumption.

Assumption A. W has at least one negative eigenvalue and at least one positive
eigenvalue.

3The condition that Sλ is nonsingular is equivalent to the condition that 1−λω 6= 0 for all eigenvalues
ω of W , which in turn is equivalent to λ 6= ω−1, for all nonzero real eigenvalues ω of W , because λ is
assumed to be real and ω−1 is real if and only if ω is.
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Assumption A requires W not to be nilpotent (a square matrix is nilpotent if all its
eigenvalues are zero). If W were nilpotent the study of the QMLE would be trivial, as
in that case maximizing the Gaussian likelihood would be equivalent to minimizing the
residual sum of squares (Sλy −Xβ)′ (Sλy −Xβ), and hence the QMLE would coincide
with the OLS estimator.4 The additional requirement that two of the nonzero real
eigenvalues of W have opposite sign, is mainly made for simplicity, and is in any case
virtually always satisfied in applications when W is non-nilpotent. It only rules out
cases when W has no real negative or no real positive eigenvalues, which is used to
ensure that the parameter space defined below is bounded.

Given Assumption A, we normalize, without loss of generality, the largest real eigen-
value of W to be equal to 1, and we denote the smallest real eigenvalue of W by ωmin.
The interval Λ := (ω−1

min, 1) is the largest interval containing the origin in which Sλ is
nonsingular. Either Λ or a subset thereof is, implicitly or explicitly, virtually always
regarded as the relevant parameter space for λ (see, e.g., Lee, 2004, and Kelejian and
Prucha, 2010), and we do so here. The estimator we study in this paper is thus the
maximizer of the (quasi) likelihood over Λ.

2.2 Examples

To illustrate our results the following examples will be used throughout the paper,
and in particular in Section 5. The examples are chosen for their simplicity and their
importance in the literature. In the first example W has full rank, while in the second
example W has rank two (the minimum possible, given Assumption A).

Example 1 (Group Interaction Model). The relationships between a group of m mem-
bers, all of whom interact uniformly with each other, may be represented by a matrix
whose elements are all unity except for a zero diagonal. When normalized so that
its row sums are unity, such a matrix has the form Bm := (m − 1)−1 (ιmι

′
m − Im) ,

where ιm denotes an m × 1 vector of ones. Suppose there are r such groups, of sizes
m1 ≤ m2 ≤ .... ≤ mr, and there are no between-group interactions. This is a fun-
damental configuration in social network analysis. We refer to the SAR model with
block-diagonal spatial weights matrix

W = diag(Bmi , i = 1, ..., r) (2.1)

as the Group Interaction model (see, e.g., Case, 1992, Kelejian et al., 2006, Lee, 2007,
Davezies et al., 2009, Carrell et al., 2013, and Boucher et al., 2014). It is sometimes
also known as the districts model (Kyriakou et al., 2017). For this model Λ = (−(m1 −
1), 1). We say that the model is balanced if the groups are of the same size, unbalanced
otherwise.5

Example 2 (Complete Bipartite Model). In a complete bipartite graph the n observa-
tional units are partitioned into two groups of sizes p and q, say, with all individuals
within a group interacting with all in the other group, but with none in their own group
(e.g., Bramoullé et al., 2009, Lee et al., 2010). For p = 1 or q = 1 this corresponds to

4If W is nonnegative, as it is usually the case in applications, then it is nilpotent if and only if there is
a permutation of the observational units that makes W triangular, i.e., makes the autoregressive process
unilateral (see Martellosio, 2011).

5In the unbalanced case, particularly, it may be more realistic to assume a different autoregressive
parameter for each group, but this generalization will not be considered in the present paper.
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the graph known as a star, a particularly important case in social network theory (e.g.,
Jackson, 2008). The adjacency matrix of a complete bipartite graph is

A :=

[
0pp ιpι

′
q

ιqι
′
p 0qq

]
.

The corresponding row-standardized weights matrix is

W =

[
0pp

1
q ιpι

′
q

1
p ιqι

′
p 0qq

]
. (2.2)

Alternatively, A can be rescaled by its largest eigenvalue, yielding the symmetric weights
matrix

W =
1
√
pq
A. (2.3)

We refer to the SAR model with weights matrix (2.2) or (2.3), as, respectively, the row-
standardized Complete Bipartite model and the symmetric Complete Bipartite model. In
both cases, W has eigenvalues −1, 0, and 1, so Λ = (−1, 1).

3 The profile log-likelihood

Quasi-maximum likelihood of the parameters in model (1.1) is based on the log-likelihood
obtained under the assumption ε ∼ N(0, In). For any λ such that Sλ is nonsingular, this
log-likelihood is

l(β, σ2, λ) := −n
2

log(σ2) + log (|det (Sλ)|)− 1

2σ2
(Sλy −Xβ)′(Sλy −Xβ), (3.1)

where additive constants have been omitted. Maximizing l(β, σ2, λ) with respect to β
and σ2 for fixed λ yields the values

β̂ML(λ) := (X ′X)−1X ′Sλy, σ̂2
ML(λ) :=

1

n
y′S′λMXSλy, (3.2)

and the profile, or concentrated, log-likelihood

l(λ) := −n
2

log
(
y′S′λMXSλy

)
+ log (|det (Sλ)|) , (3.3)

where MX := In −X(X ′X)−1X ′. The profile log-likelihood function l(λ) is a.s. differ-
entiable for any λ such that det(Sλ) 6= 0, and the profile score is

s(λ) := n
y′W ′MXSλy

y′S′λMXSλy
− tr (Gλ) , (3.4)

where Gλ := WS−1
λ .6

We can now define the QMLE of λ precisely. Recall that the condition that Sλ is
nonsingular is equivalent to λ 6= ω−1, for all nonzero real eigenvalues ω of W . That is,
the function l(λ) is a.s. defined for λ on the whole real line with the exception of a finite

6Throughout the paper, a.s. stands for almost surely with respect to Lebesgue measure on Rn.
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number of isolated points (and the unrestricted maximizer of l(λ) can, in general, be
anywhere on this set). The estimator we consider in this paper is

λ̂ML := arg max
λ∈Λ

l(λ). (3.5)

Issues of existence and uniqueness are addressed below. This is the QMLE in most
common use, but of course it might not be the QMLE under a different specification
of the parameter space for λ. In particular, several authors have suggested that λ
should be restricted to (−1, 1), which is convenient for interpretation of λ and because
it does not depend on n (see, e.g., Kelejian and Prucha, 2010). Note that if W is
nonnegative, (−1, 1) ⊆ Λ by the Perron-Frobenius Theorem. If (−1, 1) is a proper
subset of Λ, the estimator λ̃ML := arg maxλ∈(−1,1) l(λ) is a censored version of λ̂ML.

That is, Pr(λ̃ML = −1) = Pr(λ̂ML < −1), and Pr(λ̃ML < z) = Pr(λ̂ML < z), for any
z ∈ (−1, 1), and it is clear that the results for λ̂ML given below induce those for λ̃ML.

For future reference, we rewrite the profile score as

s(λ) =
n

2

y′S′λQλSλy

y′S′λMXSλy
, (3.6)

where

Cλ := Gλ −
tr (Gλ)

n
In, (3.7)

and Qλ is the symmetric matrix

Qλ := MXCλ + C ′λMX . (3.8)

We will also need the following notation. Let N denote the number of distinct
eigenvalues of W . If the distinct eigenvalues of W are all real we denote them by, in
ascending order, ω1, ω2, ..., ωN , the eigenvalue ωi occurring with algebraic multiplicity
ni (so that ω1 = ωmin and ωN = 1). The eigenvalues of Gλ and Cλ are then, under the
assumption that the eigenvalues of W are all real, respectively gi(λ) := ωi/ (1− λωi)
and γi(λ) := gi(λ) − tr (Gλ) /n, for i = 1, ..., N . Note that the γi(λ)’s are demeaned
versions of the gi(λ)’s.

3.1 Existence of the QMLE

Before embarking on a study of the properties of λ̂ML it is prudent to check that it
exists, i.e., that the profile log-likelihood is bounded above on Λ, and, if it exists, that
it is not trivial, i.e., that it depends on the data y. Perhaps unexpectedly, there are
combinations of the matrices W and X for which neither of these is true (even for
large n), some of which have been noticed by others (see, e.g., Lee, 2007). A complete
discussion is omitted for brevity, but details and examples can be found in Section S.1
of the Supplementary Material. In the rest of the paper, we assume that the QMLE
exists a.s. and is not trivial (that is, we rule out the pathological cases described in
Proposition S.1.1). Note that if it exists a.s., λ̂ML is unique a.s., because, as can be
easily verified, l(λ) identifies λ.

3.2 The likelihood equation

Since Λ is an open set, and it can be shown that the function l(λ) is a.s. differentiable
on Λ, λ̂ML must, subject to existence, be a root of the likelihood equation s(λ) = 0. The
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fact that λ̂ML is (usually) only implicitly defined by this equation is a consequence of
the following result.

Lemma 1. The likelihood equation s(λ) = 0 is a.s. equivalent to a polynomial equation
of degree equal to the number of distinct eigenvalues of W .

According to Lemma 1, the equation s(λ) = 0 has a number of complex roots
(counting multiplicities) equal to the number of distinct eigenvalues of W . Of these,
any real root in Λ is a candidate for λ̂ML. Since there is no explicit algebraic solution of
polynomial equations of degree higher than four, Lemma 1 explains why λ̂ML cannot in
general be obtained in “closed form”. In spite of this, we shall see in the next section
that the cdf of λ̂ML admits a very simple representation in terms of the cdf of a certain
quadratic form. The following result is the key to that representation.

Lemma 2. If tr(C2
λ) > 0 for all λ ∈ Λ, the likelihood equation s(λ) = 0 a.s. has a single

solution in Λ, which corresponds to the maximum of l(λ) on Λ.

Geometrically, Lemma 2 says that, under the stated condition, the profile log-
likelihood l(λ) is a.s. single-peaked on Λ, with no stationary inflection points. Although
not our main focus here, this single-peakedness result has significant implications for
the computation of the QMLE, a subject that has itself attracted a considerable liter-
ature (see LeSage and Pace, 2009, Chapters 3 and 4). The main advantage is that it
guarantees that an optimization algorithm searching for λ̂ML will not settle on a local,
rather than global, maximum, thus avoiding the need to start the algorithm on a grid
of different initial values.

Note that the condition “tr(C2
λ) > 0 for all λ ∈ Λ” depends only on W, not on X.

Importantly, it is satisfied whenever W has only real eigenvalues, which is often the
case in applications.7 For example, all eigenvalues of W are real when W is the row-
standardized version of a symmetric matrix, or, more generally, when it is similar to a
symmetric matrix. It seems difficult to provide a simple characterization of the class of
matrices W for which tr(C2

λ) > 0 for all λ ∈ Λ, but, for any given W , one can check the
condition graphically. The following example provides some evidence that the condition
is considerably more general than the requirement that all eigenvalues of W are real.

Example 3. Consider the weights matrix W obtained by row-standardizing the band
matrix

A =


0 a3 a4 0 · · ·
a1 0 a3 a4

a2 a1 0 a3

0 a2 a1 0
...

. . .

 ,
for fixed a1, a2, a3, a4. If a1 = a3 and a2 = a4, all the eigenvalues of W are real and
therefore l(λ) is a.s. single-peaked by Lemma 2. Other configurations of the ai can
induce multi-peakedness of l(λ). To see this, fix n = 20, a1 = a2 = a3 = 1, and consider
values of a4 in [0, 1]. For a4 larger than about 0.55 and not too close to 1, the eigenvalues
of W are not all real. However, for any a4 larger than about 0.55, tr(C2

λ) > 0 for all

7If all eigenvalues of W are real then all eigenvalues of Cλ are real, and hence all eigenvalues of C2
λ

are nonnegative, which implies tr(C2
λ) ≥ 0. But tr(C2

λ) = 0 is impossible given Assumption A, because
it requires all eigenvalues of Cλ to be zero, which is the case if and only if Gλ, and hence W, is a scalar
multiple of In.
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Figure 1: tr(C2
λ), for λ ∈ Λ, in the case of the weights matrix W in Example 3.

λ ∈ Λ, and hence l(λ) is a.s. single-peaked by Lemma 2. For smaller values of a4 tr(C2
λ)

is not positive for all λ ∈ Λ, and there is a positive probability (as y ranges over Rn)
that l(λ) is multi-peaked. Figure 1 displays tr(C2

λ) when a4 = 0.9 (left panel) and a4 = 0
(right panel). Note that Λ depends on a4. Simulation suggests that, whatever the value
of X, a4 = 0 entails a high probability of multi-peakedness

We stress that the single-peakedness property implied by Lemma 2 holds for any
instance of model (1.1), including panel versions (i.e., W block-diagonal and X possibly
containing fixed effects), and models including spatially lagged regressors WX. A com-
plete understanding of what may cause multi-peakedness when the condition in Lemma
2 is not satisfied is beyond the scope of this paper, but the next result is a first step in
that direction.

Lemma 3. If W is nonnegative, the likelihood equation s(λ) = 0 a.s. has at most one
solution in [0, 1), which corresponds to a local maximum of l(λ).

That is, provided that W is nonnegative (which is virtually always the case in appli-
cations), if l(λ) has a peak on the open interval (0, 1), then it is single-peaked on that
interval. In other words, when W is nonnegative, multi-peakedness must always involve
peaks at negative values of λ. This result is of interest for applications in which it may
be natural to restrict attention to positive values of λ. Some further remarks on Lemma
2 are collected in Section S.2 of the Supplementary Material.

4 Distribution properties of the QMLE

4.1 The main result

The single-peaked property established in Lemma 2 means that λ̂ML is to the left of a
point z ∈ Λ if and only if the slope of l(λ) at λ = z is negative. This observation leads
to the following result.

Theorem 1. If tr(C2
λ) > 0 for all λ ∈ Λ, the cdf of λ̂ML at any point z ∈ Λ is given by

Pr(λ̂ML ≤ z) = Pr(y′S′zQzSzy ≤ 0). (4.1)

Theorem 1 provides an explicit representation of the cdf of λ̂ML, for any W such
that tr(C2

λ) > 0, for all λ ∈ Λ, for any X, and, importantly, for any distribution of y
(not necessarily that induced by the SAR model). The result reduces the study of the
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properties of λ̂ML, an estimator that is generally unavailable in closed form, to the study
of the properties of the family of quadratic forms y′S′zQzSzy, for z ∈ Λ.

There are a number of consequences of this simple result, only some of which will be
pursued here. First, subject to suitable conditions on (W,X), the first-order asymptotic
distribution of λ̂ML can be obtained directly from Theorem 1 by an application of the
results in Kelejiian and Prucha (2001) on the asymptotic distribution of quadratic forms.
The first-order asymptotic behavior of the QMLE has been comprehensively studied by
Lee (2004), using a related methodology, and hence will not be discussed further in this
paper.

Second, in cases where the matrix S′zQzSz of the quadratic form is sufficiently simple,
the result can deliver an explicit formula for the cdf of λ̂ML. Details for some interesting
examples will be given in Section 5. In particular, for the pure model we are able to de-
rive an expression for the exact density of λ̂ML when W is symmetric and ε ∼ N(0, σ2In).
But, except under strong restrictions on (W,X), equation (4.1) does not produce general
exact results. This is because, even under Gaussian assumptions on ε in (1.1), distri-
bution theory for quadratic forms is extremely complex, and closed-form formulae for
distributions and densities are available only in very special cases. However, because of
their ubiquity in inference, this fact has itself motivated a very large literature on the
problem of approximating the distributions of quadratic forms, and a third consequence
of Theorem 1 is that we can appeal directly to that literature for methods that provide
simple higher-order asymptotic approximations to the distribution of λ̂ML. In Section 6
below we derive a saddlepoint-based approximation to the distribution of λ̂ML and use
it to construct confidence intervals for λ. One could, alternatively, use existing results
on Edgeworth expansions for the distribution of quadratic forms (cf., Konishi, Niki, and
Gupta, 1986, and Robinson and Rossi, 2015), but such expansions are likely to perform
less satisfactorily in the tails of the distribution.

It is worth noting that Theorem 1 provides a straightforward way to obtain the cdf
of λ̂ML numerically, for any completely specified distribution of y (not necessarily that
induced by the SAR model). Indeed, using equation (4.1), the whole cdf can be com-
puted very efficiently by simply simulating a quadratic form and counting the proportion
of negative realizations, without the need to maximize the likelihood at each repetition.
This is useful, for example, to study by simulation how the model characteristics (pa-
rameters, design matrices W and X, and distribution of ε) affect the distribution of λ̂ML.
Theorem 1 also simplifies the task of bootstrapping the distribution of λ̂ML, again with-
out the need to maximize the likelihood ever. The saddlepoint approach discussed in
Section 6 can be viewed as an alternative to bootstrapping the distribution (cf. Butler,
2007, Chapter 14).

Three further (exact) consequences of Theorem 1 are important, and are discussed
next. The first is the possibility – exposed by the representation given in Theorem
1 – that the support of the estimator λ̂ML (i.e., the set on which the density of λ̂ML

is positive) may not be the entire interval Λ. The second is that Theorem 1 implies
certain important invariance properties of the estimator. Finally, known properties of
quadratic forms imply that the (exact) distribution of λ̂ML will typically have points
of non-analyticity, and between such points will have a different functional form. We
discuss these briefly in turn.
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4.2 Support of the QMLE

The fact that the support of λ̂ML is not necessarily the entire interval Λ is an unexpected
phenomenon that has not been noticed previously, to the best of our knowledge. The
phenomenon occurs under certain conditions on the relation between W and X. While it
seems difficult to specify general conditions on W and X that lead to restricted support
for λ̂ML, special cases where this occurs are easily deduced. We give just the simplest
of these below.

To begin with, observe that the likelihood equation s(λ) = 0 implies that the only
possible candidates for the QMLE are the values of λ for which the matrixQλ is indefinite
(see equation (3.6)). More decisively, Theorem 1 shows that if there are values of
z ∈ Λ for which Qz is either positive or negative definite, those will either be impossible
(Pr(λ̂ML ≤ z) = 0), or certain (Pr(λ̂ML ≤ z) = 1). In such cases the support of λ̂ML is a
proper subset of Λ. This cannot happen for the pure SAR model, because in that case
Qz = (Gz+G′z)−n−1tr(Gz+G′z)In, which is necessarily indefinite (since n−1tr(Gz+G′z)
is the average of the eigenvalues of Gz+G′z). But, when regressors are introduced, there
can be choices for (W,X) for which λ̂ML is not supported on the whole interval Λ. The
following result illustrates this. For simplicity, the result is based on the assumption
that y is supported on the whole of Rn. For i = 2, ..., N − 1, zi denotes the point z ∈ Λ
at which γi(z) = 0 (existence and uniqueness of each of these points is established by
Lemma A.1 in Appendix A), and col(A) denotes the column space of a matrix A.

Proposition 1. Assume that in a SAR model W is similar to a symmetric matrix and
MXW is symmetric.

(i) If, for some i = 2, ..., N − 1, col(X) contains all eigenvectors of W associated to
the eigenvalues ωj with j > i, then the support of λ̂ML is (ω−1

min, zi).

(ii) If, for some i = 2, ..., N − 1, col(X) contains all eigenvectors of W associated to
the eigenvalues ωj with j < i, then the support of λ̂ML is (zi, 1).

We now provide some intuition, and some examples, for Proposition 1. One impli-
cation of the result is that λ̂ML cannot be positive if col(X) contains all eigenvectors of
W associated to positive eigenvalues (even if the true value of λ is positive).8 Now, the
eigenvectors of W associated to positive eigenvalues can be interpreted as capturing all
positive spatial autocorrelation (as measured by the statistic u′Wu/u′u) in a zero-mean
process u. Also, λ̂ML can be thought of as a measure of the autocorrelation remaining
in y after conditioning on the regressors. Hence, Proposition 1 admits the intuitive
interpretation that the autocorrelation remaining after conditioning on all eigenvectors
of W associated to positive eigenvalues can only be negative. An example of this effect
arises in the unbalanced Group Interaction model with group fixed effects, and all β
coefficients varying across groups (see Section S.3.3 in the Supplementary Material). In
this model, the fixed effects span the eigenspace of W associated to the eigenvalue 1, and
1 is the only positive eigenvalue of W . Hence, in this model λ̂ML can never be positive.
Another example of the restricted support phenomenon, in the context of a Complete
Bipartite model, will be given in Section 5.3.2.

It is worth remarking that if the support of λ̂ML is restricted, then (i) asymptotic
approximations to its distribution that are supported on the entire interval Λ are unlikely
to be satisfactory; (ii) λ̂ML clearly cannot be consistent uniformly over λ.

8This is because, in that case, zi in Proposition 1(i) must be nonpositive, by Lemma A.1 in Appendix
A and the fact that γi(0) = ωi ≤ 0.
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4.3 Invariance properties

Two invariance properties of the distribution of λ̂ML follow from the score equation (3.4),
and are evident in representation (4.1). These derive from the fact that the distribution
of λ̂ML is invariant under the group of scale transformations y → κy. Firstly, assuming
that the distribution of ε does not depend on β and σ2, this type of scale invariance
implies that the distribution of λ̂ML depends on (β, σ) only through β/σ. Thus, in
particular, in the pure model the distribution of λ̂ML does not depend on σ2. For details,
and for a proof that, under certain special conditions on (W,X), the dependence on
parameters may be further reduced, see Section S.3.1 of the Supplementary Material.

A second important consequence of this scale invariance, generalizing the above, is
that κ in the transformation y → κy may be interpreted as a random variable (indepen-
dent of y), which leads to the following result.9

Proposition 2. The distribution of λ̂ML induced by a particular distribution of y is the
same for all scale mixtures of that distribution.

This observation means, in particular, that any property of the distribution of λ̂ML

that holds under the assumption y ∼ N(S−1
λ Xβ, σ2(S′λSλ)−1) (a Gaussian SAR model)

also holds under every member of the much larger family of scale mixtures of that
distribution for y. Assuming normality, as we shall do to derive exact analytical results
shortly, is therefore less restrictive than it would usually be. Also note that if it does
not depend on σ, the distribution of λ̂ML is invariant to mixing the distribution of ε (see
the Supplementary Material).

4.4 Points of non-analyticity

Quadratic forms have been much studied in the statistical and econometric literature. As
already remarked, their distribution theory is generally complicated, but some general
distributional properties of λ̂ML follow from that literature. One important property
in this category is that, in general, the cdf of λ̂ML may fail to be analytic everywhere
on Λ. In Section S.3.2 of the Supplementary Material we show that, provided that the
distribution of y is sufficiently smooth, the cdf of λ̂ML is analytic everywhere on Λ except
at the points of discontinuity of rank(Qz). These points depend only on W and X, not
on the distribution of y, or on the parameters of the model. In general, Λ contains several
nonanalyticity points, their number depending on W and X. In the particular case of a
pure SAR with symmetric W , however, the number of nonanalyticity points is always
N − 2, where, recall, N denotes the number of distinct eigenvalues of W .10 Examples
will be given in Section 5. It is worth remarking that in some cases the non-analyticity
persists asymptotically, the Complete Bipartite model being one example (see Section
5.3.1).

5 Some exact analytical results

In this section we study exact properties of λ̂ML under the assumption, common in exact
and higher-order asymptotic analysis, of normality. More precisely, we assume that the

9The family of scale mixtures of a density p(y) for y (assuming it exists) is defined by
∫
κ
p(κy)g(κ) dκ,

where g(κ) varies over the set of (for simplicity) proper densities for κ.
10This is because if W is symmetric and there are no regressors, Qz = 2Cz so by Lemma A.1 there

are N − 2 distinct values of z where one of the eigenvalues of Qz vanishes.
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distribution of y is that induced by a SAR model with ε ∼ N(0, In). Recall from Section
4.3 that any result obtained for λ̂ML under normality also holds under scale mixtures of
the distribution of y (or of ε). We use the notation SMN(0, In) to represent the family
of scale mixtures of N(0, In).

From Theorem 1 we have

Pr(λ̂ML ≤ z) = Pr
(
ỹ′A(z, λ)ỹ ≤ 0

)
, (5.1)

where ỹ := Sλy, and
A(z, λ) := (SzS

−1
λ )′Qz(SzS

−1
λ ). (5.2)

The structure of the matrix A(z, λ) is evidently crucial in determining the prop-
erties of λ̂ML. In particular, a spectral decomposition of A(z, λ) shows that, when
ỹ ∼ N(Xβ, σ2In), ỹ′A(z, λ)ỹ is distributed as a linear combination of independent, pos-
sibly non-central, χ2 variates, with coefficients the distinct eigenvalues of A(z, λ). This
familiar approach delivers exact results that are of interest in illustrating the various
aspects of the distribution of λ̂ML we have mentioned. In Section 5.1 we obtain the
exact distribution for the case of a pure model with symmetric W . This provides a clear
explanation of the non-analyticity phenomenon. Then, in Sections 5.2 and 5.3, we turn
to the two examples of Section 2.2: the balanced Group Interaction model and the Com-
plete Bipartite model.11 These illustrate both the non-analyticity and restricted support
phenomena. They also provide examples of cases in which the asymptotic properties of
λ̂ML are non-standard.

5.1 Pure SAR model with symmetric W

If the mean component Xβ in equation (1.1) is missing, and W is symmetric, the
eigenstructure of the matrix of the quadratic form in (4.1) simplifies dramatically. Let
W be a symmetric weights matrix with spectral decomposition W = HDH ′, where D is
diagonal with the eigenvalues of W on the diagonal and H is an orthonormal matrix of
eigenvectors. Then, recalling that ω1, ..., ωN denote the distinct eigenvalues of W , and
ni their respective multiplicities, the matrix A(z, λ) in equation (5.2) has the spectral
decomposition

A(z, λ) = Hdiag (dii(z, λ)Ini , i = 1, ..., N)H ′, (5.3)

where

dii(z, λ) := γi(z)

(
1− zωi
1− λωi

)2

, i = 1, ..., N, (5.4)

are the eigenvalues of A(z, λ) (recall that the γi(z)’s are the eigenvalues of the matrix Cλ
defined in equation (3.7)). Thus, the quadratic form ỹ′A(z, λ)ỹ reduces to a weighted
sum of independent χ2

ni variates (here and elsewhere, χ2
ν denotes a central χ2 random

variable with ν degrees of freedom). Thus, Theorem 1 has the following consequence:12

11By Lemma 1, in the balanced Group Interaction model and in the Complete Bipartite model, λ̂ML

is the unique root in Λ of a quadratic and a cubic, respectively, and is therefore available in closed form.
However, obtaining the exact distribution from such a closed form seems difficult. Theorem 1 provides
a much more convenient approach.

12A more general version of Proposition 3 can be obtained under the condition that col(X) is spanned
by k linearly independent eigenvectors of W ; see equation (S.3.5) in the Supplementary Material.
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Proposition 3. In a pure SAR model with symmetric W and ε ∼ SMN(0, In), for any
z ∈ Λ,

Pr(λ̂ML ≤ z) = Pr

(
N∑
i=1

dii(z, λ)χ2
ni ≤ 0

)
, (5.5)

where the χ2
ni variates are independent.

Proposition 3 shows that, under the stated conditions, the distribution of λ̂ML de-
pends on W only through its eigenvalues and their multiplicities. The properties of
the coefficients dii(z, λ) that occur in this expression are described in Lemma A.1 in
Appendix A. That lemma establishes, in particular, that, for any λ ∈ Λ, d11(z, λ) < 0
and dNN (z, λ) > 0 for all z ∈ Λ, and, for each i = 2, ..., N − 1, dii(z, λ) changes sign
exactly once, at the point zi where the eigenvalue γi(z) of Cz changes sign. Thus, when
N = 2 neither coefficient changes sign, but when N > 2 the number of positive and
negative coefficients in equation (5.5) varies as z varies over Λ. The cdf is therefore
defined piecewise, and is non-analytic at the points zi, i = 2, ..., N − 1, where the pieces
meet. Note that the points zi depend on W alone.

The number N of distinct eigenvalues of W must be at least two, by Assumption A.
If N = 2, equation (5.5) gives

Pr(λ̂ML ≤ z) = Pr

(
Fn1,n2 ≤ −

n2d22(z, λ)

n1d11(z, λ)

)
, (5.6)

where Fν1,ν2 denotes a random variable with an F distribution on (ν1, ν2) degrees of
freedom. Thus, when N = 2 the cdf is remarkably simple, and there is no point of
non-analyticity in this case (cf. Section 4.4 above). The balanced Group Interaction
model has this form.

Using the representation (5.5), it is possible to derive an expression for the cdf in
each interval between the points zi at which the coefficients dii(z, λ) change sign. Such
an expression generalizes equation (5.6) to the case N ≥ 2. To do so, some new notation
is needed. For fixed z ∈ Λ\{z2, ..., zN−1} , define v1 :=

∑N
i=1 ni1dii(z,λ)<0 and v2 := n−v1

(1K being the indicator function of the condition K). The numbers (v1, v2) vary with
z but not with λ. Next, denote by A1 the v1 × v1 matrix diag(−dii(z, λ)Ini , i ∈ {i :
dii(z, λ) < 0}), and by A2 the v2 × v2 matrix diag(dii(z, λ)Ini , i ∈ {i : dii(z, λ) > 0}).
Finally, (a)j := a(a + 1)...(a + j − 1) denotes the Pochhammer symbol, and Cj(A)
denotes the top-order zonal polynomial of order j in the eigenvalues of a matrix A (see
Muirhead, 1982, Chapter 7).

Proposition 4. In a pure SAR model with symmetric W and ε ∼ SMN(0, In), for
z in the interior of any one of the N − 1 intervals in Λ determined by the points of
non-analyticity z2, ..., zN−1,

Pr(λ̂ML ≤ z) =
∞∑

j1,j2=0

cj1(φ1A1)cj2(φ2A2) Pr

(
Fv2+2j1,v1+2j2 ≤

(v1 + 2j2)φ2

(v2 + 2j1)φ1

)
, (5.7)

for arbitrary coefficients φ1, φ2 > 0, and where, for i = 1, 2, and for j = 0, 1, ...,

cj(φiAi) :=

(
1
2

)
j
Cj(Ivi − (φiAi)

−1)

j! (det(φiAi))
1
2

.
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When φi satisfy φiAi > Ivi (entrywise), for i = 1, 2, all weights cji(φiAi) are non-
negative and

∑∞
j1,j2=0 cj1(φ1A1)cj2(φ2A2) = 1; that is, the cdf is a doubly-infinite mixture

of F distribution functions.13

The weights in the doubly-infinite mixture representation are quite complicated poly-
nomials in the coefficients that appear in (5.5), but efficient computation of the top-order
zonal polynomials can be achieved by the methods discussed in Hillier, Kan, and Wang
(2009). Even so, the exact expression in Proposition 4 is probably of limited use for
inference. What is more useful is that Proposition 3 expresses the cdf of λ̂ML as that of
sum of independent random variables, and this is the situation in which the Lugannani-
Rice approximation we will use later on can be expected to work well (see, e.g., Wood,
Booth, and Butler, 1993).

Two further consequences of Proposition 3 are worth pointing out. First, based on
equation (5.5), the cdf of λ̂ML can be simulated very efficiently, for a given (possibly
estimated) value of λ, without ever maximizing the likelihood; all that is needed is
to simulate N independent χ2 random variables. Second, representation (5.5) reveals
the behavior of λ̂ML as λ approaches the extremes of Λ. Indeed, dividing the sum∑N

i=1 dii(z, λ)χ2
ni by (1− z)2/(1− λ)2, we obtain

Pr(λ̂ML ≤ z) = Pr

(
γN (z)χ2

nN
+

N−1∑
i=1

(
(1− zωi) (1− λ)

(1− λωi) (1− z)

)2

γi(z)χ
2
ni ≤ 0

)
. (5.8)

As λ ↑ 1, all terms in the sum in (5.8) go to zero for any z ∈ Λ, and hence, since
γN (z) > 0 for any z ∈ Λ by Lemma A.1 in Appendix A, Pr(λ̂ML ≤ z;λ) → 0 for any
z ∈ Λ. Similarly, Pr(λ̂ML ≤ z;λ)→ 0 for any z ∈ Λ as λ ↓ ω−1

1 . That is, the distribution

of λ̂ML tends, as λ ↑ 1 (resp., λ ↓ ω−1
1 ), to a degenerate distribution with mass at 1

(resp., ω−1
1 ).

More general versions of Proposition 3 can be derived for the general model (with X
included) when W is assumed only to be similar to a symmetric matrix - see the Sup-
plementary Material. Not surprisingly, these representations are complicated, although
they do simplify under certain restrictive assumptions of (W,X). The Supplementary
Material also discusses other consequences of Proposition 3.

5.2 Balanced Group Interaction model

Equation (5.5) produces a strikingly simple result for the balanced Group Interaction
model, because the weights matrix W = Ir ⊗ Bm has only two distinct eigenvalues, 1
with multiplicity r, and −1/(m−1) with multiplicity r(m−1). Using equation (5.5), we
obtain the following expressions for the cdf and pdf of λ̂ML, where c(z, λ) := θ(z)/θ(λ),
with θ(z) := ((z +m− 1)/(1− z))2 , for any z, λ ∈ Λ, and a dot denotes differentiation
with respect to z.

Proposition 5. In the pure balanced Group Interaction model with ε ∼ SMN(0, In),

Pr(λ̂ML ≤ z) = Pr
(
Fr,r(m−1) ≤ c(z, λ)

)
, (5.9)

13Expression (5.7) holds for arbitrary positive numbers φ1 and φ2. However, if these coefficients are to
satisfy the mixture conditions φiAi > Ivi , i = 1, 2, they must depend on z, because one of the dii(z, λ)
in each matrix A1 and A2 goes to zero as z approaches one of the zi.
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and, differentiating,

pdf λ̂ML
(z;λ) =

ċ(z, λ)c(z, λ)
r
2
−1

(m− 1)
r
2B
(
r
2 ,

r(m−1)
2

) (1 +
c(z, λ)

m− 1

)− rm
2

, (5.10)

for any λ, z ∈ Λ.

Proposition 5 enables a complete analysis of the exact properties of λ̂ML, and the
results needed for inference based upon it. These are explored in detail in Hillier and
Martellosio (2016), so we restrict ourselves here to a brief summary.

First, one has from equation (5.9) that Pr(λ̂ML ≤ λ) = Pr
(
Fr,r(m−1) ≤ 1

)
, which

does not depend on λ. For m = 2 this is exactly .5, so λ̂ML is median-unbiased when
m = 2, but not otherwise. Form > 2 it can be shown that Pr(Fr,r(m−1) ≤ 1) > .5, so that

Pr(λ̂ML ≤ λ) > .5, which means that the median of λ̂ML is below the true value: there is
a negative median bias when m > 2. The exact median of λ̂ML, and a median-unbiased
estimator based on it, exact confidence intervals for λ based on λ̂ML, and expressions for
the moments of λ̂ML, are all given in Hillier and Martellosio (2016), which also provides
a detailed analysis of the unbalanced case and other generalizations. One particular case
of interest is a balanced model with a constant mean, so that X = ιn. In this model,
existence of the MLE requires r > 1 (cf. Section 3.1). Provided that r > 1, Proposition
S.3.3 in the Supplementary Material yields, when applied to this model, the result

Pr(λ̂ML ≤ z) = Pr

(
Fr−1,r(m−1) ≤

r

r − 1
c(z, λ)

)
.

Next, equation (5.9) shows that, as is already known in the literature, r → ∞ is
sufficient for consistency of λ̂ML (because then Fr,r(m−1) →p 1), but m → ∞ may not
be.14 Indeed, if r →∞ is assumed, Lee’s (2004) Assumptions 3 and 8’ are satisfied, as is
his condition (4.3), so λ̂ML is consistent and asymptotically normal by Lee’s Theorems
4.1 and 4.2. On the other hand, if n→∞ because m→∞, Lee’s Assumption 3 is not
satisfied, and λ̂ML may be inconsistent in this case. This case, that is not fully analyzed
by Lee (2004), is an example of so-called infill asymptotics.

Equation (5.9), along with the known result v1Fv1,v2 →d χ
2
v1 as v2 →∞, shows that,

for fixed r,

Pr(λ̂ML ≤ z)
m→∞−→ Pr

(
χ2
r ≤ r

(
1− λ
1− z

)2
)
, −∞ < z < 1.

Thus, λ̂ML is indeed inconsistent under infill asymptotics. The associated limiting den-
sity as m→∞ with r fixed is

pdf λ̂ML
(z;λ)

m→∞−→ r
r
2 (1− λ)r

2
r
2
−1Γ( r2)(1− z)r+1

e−
r
2( 1−λ

1−z )
2

,

14This is not unexpected: the partial information on λ in this model is

iλλ.σ2 =
2rm(m− 1)

(1− λ)2(λ+m− 1)2
,

which increases without bound as r →∞, m fixed, but approaches the finite limit 2r/(1−λ)2 as m→∞
with r fixed.
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so λ̂ML converges to a random variable supported on (−∞, 1).
Figure 2 displays the exact density (5.10) for λ = 0.5, and for m = 10 and various

values of r (left panel), and for r = 10 and various values of m (right panel). For
convenience the densities are plotted for z ∈ (−1, 1) ⊆ Λ. It is apparent that the density
is much more sensitive to r (the number of groups) than to m (the group size). Analogs
of these plots for other positive values of λ exhibit similar characteristics (when λ is
negative the density can be quite sensitive to m, mainly because the left extreme of the
support of λ̂ML depends on m). It is clear from Figure 2 that increasing m but not r
provides very little extra information on λ, at least as embodied in the MLE, and that
the effective sample size under this asymptotic regime is r, and not n = rm. However,
with the simple exact result available, under (mixed-) Gaussian assumptions there is no
need to invoke either form of asymptotic approximation in this model.

−1 −0.5 0 0.5 1
0

2

4

r = 1

r = 2
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r = 20

−1 −0.5 0 0.5 1
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3
m = 2

m = 5

m → ∞

Figure 2: Density of λ̂ML for the Gaussian pure balanced Group Interaction model with
λ = 0.5, and with m = 10 (left panel), r = 10 (right panel).

5.3 The Complete Bipartite model

We now consider the Complete Bipartite model introduced in Section 2.2. We first
discuss the pure model with symmetric W , for which a simple version of equation (5.7)
applies. Then, in Section 5.3.2, we consider the case of row-standardized (therefore
non-symmetric) W in a model with a constant mean (i.e., X = ιn). This latter case
provides an example of the restricted support phenomenon described in Section 4.2.

5.3.1 Symmetric W , zero mean

In the symmetric Complete Bipartite model, W has eigenvalues 1 and −1, each with
multiplicity 1, and 0, with multiplicity n − 2. Thus, N = 3, and the parameter space
is Λ = (−1, 1). Several general properties of the distribution of λ̂ML follow easily in this
case. First, since the eigenvalues and their multiplicities depend on n, but not on the
partition into (p, q), Proposition 3 implies that the distribution of λ̂ML does not depend
on that partition. Second, in this model the linear combination of χ2 variates in equation
(5.5) becomes, after dropping irrelevant terms,

Pr(λ̂ML ≤ z;λ) = Pr(−φ1χ
2
1 − φ2χ

2
n−2 + φ3χ

2
1 ≤ 0), (5.11)

where φ1 = φ1(z, λ) := (1 + λ)−2(1 + z)2 (n− (n− 2) z), φ2 = φ2(z) := 2z, φ3 =
φ3(z, λ) := (1−λ)−2(1−z)2 (n+ (n− 2) z) , and the three χ2 random variables involved
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are independent. The coefficients φ1, φ3 are positive for any z ∈ (−1, 1), while φ2

obviously changes sign at the origin. Thus, the distribution has a different functional
form on each side of the origin, and is non-analytic at the origin. Third, for z = 0,
Pr(λ̂ML ≤ 0;λ) = Pr(F1,1 ≤ (1− λ)2 / (1 + λ)2). Since this does not depend on n it
is also the limiting cdf at z = 0 as n → ∞ (so the estimator cannot have standard
asymptotic properties). Evidently, Pr(λ̂ML ≤ 0;λ) is 0.5 if λ = 0, < 0.5 if λ > 0,
and > 0.5 if λ < 0, so the estimator is median unbiased when λ = 0, and has positive
(resp., negative) median when λ is positive (resp., negative). Fourth, for z ∈ (0, 1)
we have the expression Pr(λ̂ML ≤ z;λ) = Pr(φ3χ

2
1 ≤ φ1χ

2
1 + φ2χ

2
n−2) =: F+(z;λ),

say. Noting that φ3(z, λ) = φ1(−z,−λ), the corresponding expression for z ∈ (−1, 0) is
Pr(λ̂ML ≤ z;λ) = 1 − F+(−z;−λ), so we need only consider F+(z;λ).15 Finally, from
the standard formula for the mean of a random variable X in terms of its cdf, F (x) say,

E(X) =

∫ ∞
0

(1− F (x)) dx−
∫ 0

−∞
F (x) dx, (5.12)

we have that

E(λ̂ML;λ) =

∫ ∞
0

(F+(s;−λ)− F+(s;λ)) ds. (5.13)

It follows that
E(λ̂ML;−λ) = −E(λ̂ML;λ), (5.14)

and hence that λ̂ML is mean-unbiased when λ = 0, but may be biased otherwise.
Expression (5.11) can also be used to derive closed form expressions for the exact

cdf and density of λ̂ML. For z ∈ (0, 1),

Pr(λ̂ML ≤ z) = Pr(χ2
1 ≤ ψ1χ

2
1 + ψ2χ

2
n−2), (5.15)

with ψ1 := φ1/φ3 and ψ2 := φ2/φ3 both positive, from which an exact closed form solu-
tion for the cdf follows easily. The exact density is difficult to obtain by differentiation
of the cdf, but an alternative strategy is available (that can also be applied in more
general models): first condition on the random variables involved on the right hand side
of the inequality χ2

1 ≤ ψ1χ
2
1 + ψ2χ

2
n−2, giving the simple expression for the conditional

cdf, Pr(λ̂ML ≤ z|χ2
1, χ

2
n−2) = G1(ψ1χ

2
1 + ψ2χ

2
n−2), where Gv denotes the cdf of a χ2

v

variate. This can be differentiated with respect to z to produce the conditional density
given (χ2

1, χ
2
n−2), a relatively simple expression. The unconditional result then emerges

by averaging with respect to the conditioning variates. The derivations for the exact cdf
and density are given in Section S.4 of the Supplementary Material. Both are, even in
this relatively simple model, quite complicated (as expected), and are difficult to use.

Motivated by the complexity of exact results, even in this simple model, one naturally
looks for approximations that are more enlightening. The (large-n) asymptotic result,
which again is not covered by Lee (2004), is easily deduced, as follows. For every fixed
z ∈ Λ, the characteristic function of the random variable Vn := (φ3χ

2
1 − 2zχ2

n−2 −
φ1χ

2
1)/(n − 2) is readily seen to converge to that of V̄n := φ̄3χ

2
1 − 2z − φ̄1χ

2
1, where

φ̄1 := limn→∞(φ1/(n− 2)) = (1 + z)2(1− z)/(1 + λ)2 and φ̄3 := limn→∞(φ3/(n− 2)) =
(1− z)2(1 + z)/(1− λ)2. Therefore, Vn →d V̄n, and so, by Proposition 3,

Pr(λ̂ML ≤ z)→ Pr
(
φ̄3χ

2
1 − 2z − φ̄1χ

2
1 ≤ 0

)
.

15The weights matrix W in this model is a simple example of a matrix with a symmetric spectrum,
and the result just given holds for all such models – see Corollary S.3.1 in the Supplementary Material.
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For z ∈ (0, 1), therefore,

Pr(λ̂ML ≤ z)→ Pr
(
χ2

1 ≤ ψ̄1χ
2
1 + ψ̄2

)
, (5.16)

with

ψ̄1 :=

(
1 + z

1− z

)(
1− λ
1 + λ

)2

, ψ̄2 :=
2z(1− λ)2

(1 + z)(1− z)2
.

The expression for z ∈ (−1, 0) is obtained as for the exact case above. The limiting
distribution is certainly non-standard, and has much in common with (though is simpler
than) the exact distribution. In particular, the cdf has a different functional form for
positive and negative z, and is non-analytic at the origin. And, as in the case where
m→∞ in a balanced Group Interaction model, λ̂ML is not consistent, but converges in
distribution to a random variable as n→∞.16

An alternative, very simple, approach (attributed to Fisher) is to treat the term
ψ1χ

2
1 +ψ2χ

2
n−2 in equation (5.15) as a multiple αχ2

v of a χ2
v variate, choosing α and v so

that the means and variances of the true and approximate random variables coincide.
This has been found to work very well when less than five terms are involved.17 It also
works well in the present model - see the Supplementary Material for details. A third
approximation based on saddlepoint methods that is much more generally applicable is
introduced and discussed in the next section.

Figure 3 displays the exact density for n = 5, 10, and n→∞, and for λ = −0.5, 0, 0.5,
using the exact expressions given in the Supplementary Material. It is clear from the
plots that, similarly to the case whenm→∞ in a balanced Group Interaction model, the
density is very insensitive to the sample size, so in this model increasing the sample size
yields little extra information about λ. As a consequence, the non-standard asymptotic
density is an excellent approximation to the actual distribution under mixed-normal
assumptions. The expected non-analyticity at z = 0 is evident, and in fact for this
model the density of λ̂ML is unbounded at z = 0.
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Figure 3: Density of λ̂ML for the Gaussian pure symmetric Complete Bipartite model.

16The failure of the standard limit behavior, and the fact that the distribution is insensitive to n, are
suggested by the fact that the partial information on λ in this model is iλλ.σ2 = 4(1+λ2−1/n)/(1−λ)2.
This evidently increases with n, but to a finite limit.

17This and other approximations to the distribution of a sum of positive multiples of χ2 random
variables are discussed in Johnson, Kotz, and Balakrishnan (1995).
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5.3.2 Row-standardized W , constant mean

In a Complete Bipartite model with row-standardized W and constant mean the support
of λ̂ML is not the entire interval Λ = (−1, 1), but the subset (−1, 0). This follows from
Proposition 1, because ιn spans the eigenspace of W corresponding to the only positive
eigenvalue of W . In other words, in this model λ̂ML can never be positive, regardless of
the true value of λ.

Proposition 6. In the row-standardized Complete Bipartite model with X = ιn and
ε ∼ SMN(0, In),

Pr(λ̂ML ≤ z) =

{
Pr (F1,n−2 > −(n− 2)g(z, λ)) , if z ∈ (−1, 0)
1, if z ∈ [0, 1),

(5.17)

where

g(z, λ) :=
2z(1 + λ)2

(1 + z)2 (n− (n− 2) z)
.

The corresponding density is

pdf λ̂ML
(z;λ) =

{
1

B( 1
2
,n−2

2 )
ġ(z,λ)

g(z,λ)
1
2 (1−g(z,λ))

n−1
2
, if z ∈ (−1, 0)

0, if z ∈ [0, 1).
(5.18)

The limiting cdf and pdf as n→∞ can be obtained from Proposition 6. Letting

h(z, λ) := lim
n→∞

(−(n− 2)g(z, λ)) = − 2z(1 + λ)2

(1 + z)2(1− z)
,

we have that under mixed Gaussianity, and for z ∈ (−1, 0),

Pr(λ̂ML ≤ z)→ Pr
(
χ2

1 > h(z, λ)
)
,

and

pdf λ̂ML
(z;λ)→ − ḣ(z, λ)√

2πh(z, λ)
e−

h(z,λ)
2 .

Again, λ̂ML is not consistent, but converges in distribution to a random variable
supported on the non-positive real line as n→∞. Note that row-standardization of W
is critical here: the Complete Bipartite model with symmetric W and constant mean
does satisfy the assumptions for consistency and asymptotic normality in Lee (2004).

The density (5.18) is plotted in Figure 4 for λ = −0.5, 0, 0.5, for n = 5, 10, and for
n → ∞. Note that the shape of the density for z < 0 is similar to the case of the pure
symmetric Complete Bipartite model (Figure 3).

6 Saddlepoint approximation

The complexity of a distribution theory for λ̂ML derives from the fact that we need to
deal with the quadratic forms R = R(y, z) := y′S′zQzSzy. However, fortunately, and
precisely because the distribution theory for quadratic forms is so complex, there is a
very large literature on the problem of approximating the distribution of such a statistic.
This literature contains both first-order approximations (Kelejian and Prucha, 2001,
Lee, 2004), and higher-order (Edgeworth and Saddlepoint) approximations. Examples
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Figure 4: Density of λ̂ML for the Gaussian row-standardized Complete Bipartite model
with constant mean.

include the fundamental work of Daniels (1954), (1956), Phillips (1978), Durbin (1980),
Lieberman (1994a,b), Marsh (2002), Butler and Paolella (2008), and Robinson and Rossi
(2015).

The first-order asymptotic properties of λ̂ML are, at least under some regularity con-
ditions, known (Lee, 2004). And, Robinson and Rossi (2015) have recently given an
Edgeworth expansion for the distribution in a fixed-effects panel data model without
regressors. The result in Theorem 1 provides us with a very direct route to obtaining
saddlepoint expansions for the distribution λ̂ML.18 Thus, we focus here on the sad-
dlepoint approach, appealing mainly to Daniels (1956, 1987), and Lugannani and Rice
(1980). The approach was used by Lieberman (1994b) to approximate the distribution
of a serial correlation coefficient, and that application has much in common with the
present case. In particular, the matrix of the key quadratic form involved in that paper,
D(α̂), is a function of both the point at which the cdf is evaluated, and the parameter
of interest, as is our matrix A(z;λ). We begin by explaining the method very briefly.

6.1 The Lugannani-Rice approximation

The density of R, for a fixed z ∈ Λ, may be expressed as the inverse Fourier transform

pdfR(r) =
1

2πi

∫ c+i∞

c−i∞
exp (KR(θ)− rθ) dθ, (6.1)

where KR(θ) = log E(exp(θR(y, z))) is the cumulant generating function (cgf) of R. Note
that we have suppressed the dependence of KR on the model parameters (λ, β, σ2), but
of course they are present, as will shortly become important. Integrating the density,
the tail probability Pr(R ≥ r) is given by

Pr(R ≥ r) =
1

2πi

∫ c+i∞

c−i∞
exp (KR(θ)− rθ) dθ

θ
, (6.2)

(see Daniels, 1956, 1987). Lugannani and Rice (1980) derived an approximation to
integrals of this type by saddlepoint methods, but accounting for the fact that the

18There are other higher-order approximations of the same type that could be used, see Reid (1996,
2003) for surveys of such methods. Those, however, do not exploit the explicit representation of the
exact density, and we would expect them therefore to be inferior.
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integrand has a pole at the origin (see Daniels, 1987, for an excellent detailed discussion).
The first-order Lugannani-Rice approximation has the form (expressing it in terms of
the cdf)

Pr(R ≤ r) ' Φ(ŵ) + φ(ŵ)

(
1

ŵ
− 1

û

)
, (6.3)

where Φ(·) and φ(·) denote the cdf and pdf of the standard normal distribution,19 re-
spectively, and

ŵ := sign(r̂)
√
−2KR(r̂), û := r̂

√
K ′′R(r̂), (6.4)

where the saddlepoint value r̂ is determined by K ′R(r̂) = r, with a prime denoting a
derivative. In our case we are only concerned with the value r = 0, so the saddlepoint
r̂ is the solution to K ′R(r̂) = 0. An analogous second-order expansion is also available
(see Daniels, 1987), and is given in Section S.5 of the Supplementary Material, where
the modification needed when K ′R(0) = 0 is also given.

Remark 1. For general statistics based on non-i.i.d. data, such as ours, it can be dif-
ficult to formally justify the validity of the saddlepoint approximation. One approach
that has seen some success - see Butler, Huzurbazar, and Booth (1992a,b) - is to embed
the problem into the exponential family, and then exploit the known results on saddle-
point approximations in that context. However, this is beyond the scope of the present
paper. See also Section S.5 of the Supplementary Material.

In the case of interest here, the cgf of R assuming that ỹ ∼ N(Xβ, σ2In) is given by

KR(r) = −1

2
log (det (In − 2rA(z, λ)))− 1

2σ2
β′X ′

(
In − (In − 2rA(z, λ))−1

)
Xβ, (6.5)

for r ∈ (1/(2amin), 1/(2amax)), where amin and amax denote, respectively, the smallest
and the largest eigenvalues of A(z, λ) (see equation (5.2) for the definition of A(z, λ)).20

In the pure model with β = 0, only the first term remains, so KR(r) is free of nuisance
parameters and depends only on λ.

Remark 2. Like the QMLE λ̂ML itself, the cgf KR(r) that we propose to use as the
basis for the approximation is based on Gaussian assumptions. However, we intend
the approximation derived under these assumptions to be used more generally, and will
confirm later by simulation that it is quite robust, at least in the models we have studied.
Even when the errors have a gamma distribution – i.e., are very far from Gaussian –
the approximation works extremely well, and in many cases is much closer to the exact
cdf than the first-order asymptotic cdf.

6.2 Examples

We first illustrate the utility of the Lugannani-Rice approximation by applying it to
the two examples discussed in the previous section. Recall that these are both cases

19The base distribution in this expression need not be Gaussian; see Wood, Booth, and Butler (1993).
In our limited experience, using a chi-squared base seems to make very little difference to the performance
of the approximation, possibly because we are only concerned with the cdf of R at the origin.

20It can be shown that the saddlepoint equation K′R(r) = 0 has a unique root, r̂, in the given interval,
but that root cannot be written down explicitly. Phillips (1978) and Lieberman (1994b) (and others)
have suggested using the first few terms of a series reversion to approximate the root, but, since in our
case it is straightforward to locate the root numerically, we do not pursue that here.
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where, under certain conditions, standard first-order asymptotics does not apply. In the
Group Interaction model this occurs when the sample size increases because group sizes
increase, with the number of groups remaining small. In the complete bipartite model
Lee’s (2004) standard asymptotic results do not apply. The density of the MLE has a
point of non-analyticity (in fact a pole) at the origin in the pure model, and can have
restricted support in the row-standardized model with intercept. Thus, both examples
have peculiarities that might lead one to expect that any approximation must perform
poorly.

On the contrary, the Lugannani-Rice approximation (6.3) works very well in both
models, and reproduces the peculiarities of the respective distributions quite faithfully.
Figure 5 displays, on the left, the exact and approximated cdf of λ̂ML in a pure balanced
group interaction model with r = 5,m = 40, and, on the right, the cdf of λ̂ML in an
intercept-only row-standardized bipartite model with n = 10. In both cases, λ = 0,
ε ∼ N(0, In), and the cdf’s are plotted over (−1, 1).21 We display the exact cdf (ob-
tained using equations (5.9) and (5.17)), the Lugannani-Rice approximation, and, for
comparison, the cdf that would be used by (mistakenly) using the usual asymptotic
normal approximation. The saddlepoint approximation is graphically almost indistin-
guishable from the exact cdf in both cases, and embodies the restricted support property
accurately in the second case. More evidence of the performance of the saddlepoint ap-
proximation for the balanced Group Interaction model can be found in Section S.5.1 of
the Supplementary Material.
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Figure 5: Saddlepoint approximation, and approximation based on asymptotic normal-
ity, to the cdf of λ̂ML for a pure balanced group interaction model with (r,m) = (5, 40)
(left panel), and for an intercept-only row-standardized bipartite model with n = 10
(right panel). In both cases λ = 0.

Turning to a case where standard asymptotics does apply, Figure 6 displays the
Lugannani-Rice approximation (6.3) and the first-order asymptotic cdf (Lee, 2004)
for a pure SAR model with a row-standardized h-ahead h-behind circular matrix
(before row-standardization, this matrix has (i, j)-th entry equal to 1 if 0 < |i− j|
mod ((n−h− 1) ≤ h), and to 0 otherwise). We choose n = 200, h = 5, 10, and λ = 0.5,
take ε ∼ N(0, In), and plot the cdf’s over the interval (0,1). The “exact” cdf here is ob-
tained by simulation. The Lugannani-Rice approximation is virtually exact. Unreported
simulations suggest that, as regressors are introduced (and hence nuisance parameters

21Note that the distribution of λ̂ML is invariant to σ in the former model, to both σ and β in the
latter model; cf. Section 4.3.
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need to be estimated), the saddlepoint approximation remains extremely accurate even
in the tails, provided that n is not too small relative to k.
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Figure 6: Saddlepoint approximation, and approximation based on asymptotic normal-
ity, to the cdf of λ̂ML, for a pure SAR model, when W is a h-ahead h-behind circular
matrix, n = 200, and λ = 0.5.

6.3 Approximate confidence intervals for λ

The saddlepoint approximation to the cdf of λ̂ML can be used to construct confidence
intervals for λ. In this section we discuss and evaluate the use of such intervals. It is
important to note from the outset that KR, and hence all the terms in (6.3), depend
not just on λ, but also on the nuisance parameters β and σ2. To overcome this obstacle,
we suggest replacing (β, σ2) in the terms that appear in (6.3) not by their maximum
likelihood estimates, but by the profile MLEs β̂ML(λ) and σ̂2

ML(λ) given in equation (3.2).
This is motivated by, but is not formally equivalent to, the use of quantities obtained
from the profile likelihood to approximate the cdf of the MLE for a scalar parameter
in the presence of nuisance parameters - see Reid (2003, Section 3) for discussion and
references.22

With these substitutions, the terms ŵ and û in equation (6.3) will be functions of
just z, λ, and the data. To obtain a confidence interval for λ from the approximation we
simply replace z in the approximation (6.3) by the observed value of λ̂ML, say ẑ. Given
the data, the (approximate) cdf is then a function of λ alone, and we may, for a (1− α) %
equi-tailed two-sided confidence interval, read off upper and lower values of λ at which
Pr(λ̂ML ≤ ẑ;λ) = α/2 and 1 − α/2 (say). We will also consider right-sided confidence
intervals (−∞, λU ) where λU is the value of λ such that Pr(λ̂ML ≤ ẑ;λ) = 1− α.

6.3.1 Simulation evidence

We conduct Monte Carlo experiments to investigate the performance of the saddlepoint
confidence intervals for λ. We take W in equation (1.1) to be a row-standardized h-
ahead h-behind circular matrix, and we generate the errors εi from either (a) a standard
normal distribution, or (b) a gamma distribution with shape parameter 1 and scale

22The difference is that we are taking explicit account of the structure of the profile score function,
which the general approach does not. When k is large compared to n, some adjustments may be prudent,
the simplest of which would be to use the bias-corrected profile estimator nσ̂2

ML(λ)/(n− k) for σ2.
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parameter 1, demeaned by the population mean. Mean, variance, skewness, and kurtosis
are 0, 1, 0, 3 in case (a), and 0, 1, 2, 9 in case (b). The number of replications is 50,000
for all experiments.

We start from a small sample setting, with no regressors. We set n = 50, h = 5,
and we consider a pure model (k = 0) and a model with intercept (k = 1). Note that
in both these models the distribution of the MLE, and hence the confidence intervals,
do not depend on β or σ (cf. Section 4.3). Table 1 reports empirical coverages of 95%
saddlepoint confidence intervals, for a variety of values of λ, and compares them to the
coverages of 95% Wald confidence intervals based on first-order asymptotic normality.23

From the results in the table, it is clear that the coverages of the saddlepoint intervals
are uniformly excellent in the Gaussian case, and still very satisfactory in the gamma
case, whereas the first-order asymptotic approximation is not sufficiently accurate at
this sample size.

Table 1: Empirical coverages of saddlepoint and first-order Wald 95% confidence inter-
vals for λ, for a pure (k = 0) or intercept only (k = 1) model, when n = 50, W is a
5-ahead 5-behind circular matrix.

k = 0 k = 1
two-sided right-sided two-sided right-sided

λ Saddl. Wald Saddl. Wald Saddl. Wald Saddl. Wald

Normal
−0.9 0.950 0.936 0.950 0.935 0.950 0.916 0.949 0.890
−0.5 0.951 0.937 0.951 0.934 0.949 0.912 0.949 0.882

0 0.951 0.938 0.950 0.938 0.950 0.911 0.950 0.875
0.5 0.950 0.944 0.950 0.945 0.950 0.912 0.950 0.865
0.9 0.949 0.954 0.949 0.955 0.951 0.907 0.950 0.821

Gamma
−0.9 0.952 0.938 0.946 0.942 0.958 0.926 0.955 0.900
−0.5 0.950 0.937 0.945 0.943 0.958 0.924 0.956 0.893

0 0.950 0.939 0.946 0.947 0.959 0.922 0.955 0.886
0.5 0.949 0.942 0.944 0.952 0.957 0.925 0.954 0.879
0.9 0.944 0.946 0.938 0.961 0.958 0.917 0.955 0.834

Next, we move to a more realistic setting, by increasing the sample size and adding
regressors, and we also allow for larger values of h. Table 2 reports empirical coverages
for n = 200, 400, h = 5, 20, 50, and λ = 0, 0.5, and for a pure model (k = 0), a model
with intercept (k = 1), and a model with intercept and two regressors (k = 3). In the
case k = 3, the results depend on β/σ, and we set the true value of β/σ to ιk. Also
note that, when k = 3, the two regressors are randomly drawn, one from a standard
normal distribution and the other from a uniform on [0, 1], and then kept constant across
repetitions.24 The results in the table show that as h increases the coverage of the Wald
tests moves away from the nominal coverage, particularly for the one-sided intervals.
This is consistent with the well known fact that the first-order asymptotic approximation

23For nominal coverage 95%, the latter intervals are λ̂ML ± 1.960
√
v̂ (two-sided) and (−∞, λ̂ML +

1.645
√
v̂) (right-sided), where v̂ denotes the asymptotic variance of λ̂ML (see Theorem 3.2 of Lee, 2004)

evaluated at the MLEs for λ, β, σ2.
24We prefer not to randomly draw the regressors in each repetition, because the saddlepoint confidence

intervals are constructed assuming that X is fixed. We have tried several fixed X and the simulation
results do not vary substantially. The results are also not very sensitive to the true value of β/σ.
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to the distribution of λ̂ML deteriorates as W becomes more dense. On the other hand,
the coverage properties of the saddlepoint confidence intervals are quite insensitive to
h, k, and λ, and again remain very satisfactory under the gamma assumption.

Larger number of regressors We now consider models with a larger number of
regressors. Table 3 is the analog of Table 2 for a model with intercept and k−1 regressors,
when k = 5, 11, 21. Half of the regressors are drawn from a standard normal distribution,
half from a uniform distribution on [0, 1]. Due to the larger number of regressors, we
use the adjusted profile estimator nσ̂2

ML(λ)/(n − k) for σ2 given λ for the saddlepoint
confidence intervals, and, correspondingly, the estimator nσ̂2

ML/(n − k) for the Wald
tests. Table 4 repeats this exercise for the important case in which contextual effects
are included in the model (see the Introduction). That is, we take X = (ιn, X̃,WX̃),
where half of the columns of the n × (k̃ − 1) matrix X̃ are drawn from a standard
normal distribution, half from a uniform distribution on [0, 1]. Note that the number k
of columns of X is then 2k̃ − 1.

The empirical coverages of the saddlepoint confidence intervals are uniformly excel-
lent in both Tables 3 and 4, even when the number of nuisance parameters is large. On
the other hand, the empirical coverages of the first-order Wald confidence intervals can
be very far from the nominal coverage, especially when contextual effects are included.
One important difference between the case of Table 3 (no contextual effects) and that
of Table 4 (contextual effects) is that the coverage properties of the first-order Wald
confidence intervals improve slightly as k increases (for k > 0) in the former case, but
get worse as k increases in the latter case. This is connected to the fact that, with-
out contextual effects, additional regressors help to accurately estimate λ, whereas they
make estimation of λ more difficult in the case of contextual effects.

7 Conclusion

We have shown that, although the QMLE for λ in the SAR model (1.1) cannot be
written in closed form, its cumulative distribution function admits a relatively simple
representation. This representation exposes some unexpected properties of the estima-
tor, including that its support may be constrained to a subset of the parameter space,
and its cdf may have a different functional form on different parts of the parameter
space, and be non-analytic where they join. Such properties are illustrated in some
simple, but relevant, examples, which also provide examples of cases where standard
asymptotics do not apply. An exact expression for the cdf in a symmetric pure model
is given, but this itself illustrates that exact results based on the main representation
result, Theorem 1, will always be extremely complex, except in very special cases.

More importantly for inference, therefore, is that the representation of the cdf in
Theorem 1 provides access to a simple but powerful approximation based on saddle-
point methods, due to Lugannani and Rice (1980). We have shown that it accurately
reproduces the true cdf even in examples where standard asymptotics fails, and when
the distribution has points of non-analyticity or restricted support. Finally, we have
applied the approximation to the problem of constructing confidence intervals for λ,
and have found that the proposed confidence intervals have very satisfactory coverage
properties, even under apparently adverse model structure and assumptions. The ap-
proximation improves significantly on standard first-order asymptotics, most especially
in the important class of models containing contextual effects.
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Table 2: Empirical coverages of saddlepoint and first-order Wald 95% confidence intervals for λ, for a model when W is a h-ahead h-behind
circular matrix, and k = 0 (pure model), k = 1 (intercept only), k = 3 (intercept and two regressors).

k = 0 k = 1 k = 3
two-sided right-sided two-sided right-sided two-sided right-sided

n λ h Saddl. Wald Saddl. Wald Saddl. Wald Saddl. Wald Saddl. Wald Saddl. Wald

Normal
200 0 5 0.950 0.947 0.950 0.946 0.950 0.941 0.950 0.925 0.949 0.942 0.949 0.927

20 0.950 0.947 0.950 0.944 0.950 0.925 0.950 0.886 0.950 0.929 0.949 0.896
50 0.950 0.942 0.950 0.938 0.952 0.874 0.951 0.805 0.950 0.893 0.951 0.837

0.5 5 0.950 0.949 0.950 0.949 0.949 0.942 0.949 0.922 0.949 0.943 0.950 0.925
20 0.950 0.951 0.950 0.947 0.950 0.923 0.950 0.873 0.949 0.924 0.949 0.883
50 0.950 0.950 0.948 0.946 0.951 0.858 0.951 0.766 0.951 0.873 0.951 0.798

400 0 5 0.950 0.949 0.950 0.950 0.949 0.945 0.950 0.935 0.950 0.947 0.951 0.937
20 0.951 0.949 0.950 0.946 0.949 0.939 0.950 0.912 0.950 0.940 0.950 0.918
50 0.950 0.949 0.951 0.944 0.949 0.920 0.950 0.874 0.950 0.926 0.951 0.887

0.5 5 0.950 0.949 0.949 0.950 0.951 0.949 0.951 0.934 0.951 0.947 0.949 0.935
20 0.950 0.951 0.950 0.947 0.949 0.938 0.950 0.904 0.951 0.939 0.950 0.912
50 0.951 0.953 0.950 0.947 0.951 0.917 0.951 0.858 0.950 0.919 0.950 0.873

Gamma
200 0 5 0.953 0.950 0.950 0.952 0.954 0.946 0.951 0.930 0.951 0.944 0.950 0.930

20 0.950 0.947 0.949 0.945 0.953 0.928 0.952 0.889 0.951 0.931 0.951 0.898
50 0.949 0.942 0.947 0.940 0.953 0.876 0.951 0.806 0.952 0.894 0.951 0.838

0.5 5 0.952 0.951 0.950 0.954 0.954 0.948 0.951 0.929 0.951 0.943 0.950 0.927
20 0.950 0.951 0.948 0.949 0.953 0.927 0.951 0.877 0.951 0.926 0.951 0.885
50 0.948 0.948 0.945 0.947 0.953 0.861 0.952 0.768 0.951 0.873 0.951 0.798

400 0 5 0.952 0.951 0.951 0.953 0.952 0.948 0.949 0.937 0.951 0.948 0.950 0.936
20 0.950 0.949 0.949 0.947 0.952 0.941 0.953 0.914 0.950 0.942 0.949 0.920
50 0.949 0.947 0.948 0.945 0.952 0.922 0.950 0.878 0.950 0.926 0.951 0.888

0.5 5 0.952 0.953 0.949 0.955 0.952 0.949 0.950 0.937 0.950 0.948 0.950 0.936
20 0.952 0.953 0.951 0.950 0.953 0.941 0.951 0.909 0.949 0.940 0.949 0.914
50 0.950 0.953 0.948 0.949 0.951 0.919 0.950 0.859 0.951 0.919 0.951 0.872



Table 3: Empirical coverages of saddlepoint and first-order Wald 95% confidence intervals for λ, when W is a h-ahead h-behind circular
matrix, there are k regressors (including the intercept), and no contextual effects.

k = 5 k = 11 k = 21
two-sided right-sided two-sided right-sided two-sided right-sided

n λ h Saddl. Wald Saddl. Wald Saddl. Wald Saddl. Wald Saddl. Wald Saddl. Wald

Normal
200 0 5 0.950 0.944 0.950 0.929 0.950 0.944 0.949 0.933 0.949 0.944 0.949 0.936

20 0.951 0.932 0.949 0.901 0.950 0.935 0.950 0.909 0.950 0.939 0.950 0.921
50 0.951 0.894 0.951 0.840 0.951 0.912 0.950 0.866 0.950 0.923 0.949 0.889

0.5 5 0.949 0.942 0.950 0.925 0.950 0.944 0.950 0.931 0.950 0.945 0.949 0.935
20 0.950 0.926 0.949 0.885 0.949 0.930 0.950 0.897 0.951 0.937 0.950 0.912
50 0.952 0.875 0.952 0.800 0.951 0.893 0.950 0.831 0.951 0.907 0.951 0.860

400 0 5 0.951 0.948 0.951 0.936 0.950 0.948 0.950 0.939 0.950 0.948 0.950 0.942
20 0.949 0.939 0.950 0.918 0.949 0.942 0.950 0.923 0.951 0.945 0.951 0.931
50 0.950 0.928 0.951 0.891 0.950 0.934 0.951 0.904 0.949 0.938 0.948 0.914

0.5 5 0.949 0.946 0.948 0.934 0.948 0.945 0.949 0.933 0.949 0.948 0.950 0.941
20 0.949 0.939 0.950 0.911 0.950 0.942 0.950 0.918 0.950 0.945 0.949 0.928
50 0.949 0.919 0.949 0.873 0.949 0.927 0.948 0.890 0.948 0.931 0.948 0.904

Gamma
200 0 5 0.951 0.945 0.951 0.931 0.950 0.944 0.950 0.933 0.949 0.944 0.950 0.936

20 0.952 0.930 0.951 0.899 0.949 0.936 0.949 0.909 0.950 0.940 0.950 0.920
50 0.952 0.896 0.952 0.840 0.950 0.912 0.951 0.867 0.950 0.924 0.950 0.889

0.5 5 0.950 0.943 0.950 0.927 0.949 0.943 0.951 0.929 0.948 0.943 0.949 0.934
20 0.951 0.927 0.951 0.887 0.951 0.931 0.951 0.898 0.951 0.935 0.950 0.910
50 0.953 0.875 0.952 0.800 0.951 0.893 0.952 0.832 0.951 0.907 0.950 0.858

400 0 5 0.950 0.946 0.949 0.935 0.949 0.947 0.949 0.939 0.949 0.947 0.948 0.943
20 0.952 0.942 0.951 0.919 0.950 0.943 0.950 0.924 0.949 0.944 0.949 0.931
50 0.951 0.928 0.952 0.892 0.952 0.936 0.951 0.907 0.952 0.938 0.952 0.911

0.5 5 0.950 0.947 0.951 0.935 0.952 0.948 0.949 0.938 0.951 0.949 0.951 0.938
20 0.951 0.940 0.948 0.914 0.951 0.942 0.952 0.918 0.949 0.944 0.949 0.925
50 0.952 0.921 0.951 0.874 0.949 0.927 0.949 0.887 0.953 0.935 0.951 0.903



Table 4: Empirical coverages of saddlepoint and first-order Wald 95% confidence intervals for λ, when W is a h-ahead h-behind circular
matrix, there are k̃ regressors (including the intercept), and the model contains contextual effects.

k̃ = 3 k̃ = 5 k̃ = 11
two-sided right-sided two-sided right-sided two-sided right-sided

n λ h Saddl. Wald Saddl. Wald Saddl. Wald Saddl. Wald Saddl. Wald Saddl. Wald

Normal
200 0 5 0.950 0.926 0.949 0.891 0.949 0.903 0.949 0.851 0.947 0.794 0.950 0.699

20 0.947 0.842 0.951 0.759 0.947 0.718 0.952 0.603 0.950 0.387 0.967 0.262
50 0.950 0.679 0.960 0.546 0.955 0.546 0.970 0.386 0.959 0.398 0.974 0.225

0.5 5 0.950 0.927 0.950 0.888 0.950 0.907 0.950 0.854 0.949 0.826 0.950 0.739
20 0.951 0.832 0.950 0.737 0.951 0.711 0.953 0.587 0.958 0.423 0.964 0.294
50 0.956 0.616 0.961 0.464 0.961 0.445 0.972 0.283 0.961 0.250 0.975 0.112

400 0 5 0.950 0.940 0.948 0.915 0.951 0.928 0.952 0.891 0.950 0.882 0.950 0.813
20 0.950 0.900 0.951 0.843 0.946 0.840 0.949 0.754 0.944 0.566 0.956 0.439
50 0.949 0.819 0.951 0.721 0.948 0.666 0.955 0.537 0.951 0.354 0.970 0.223

0.5 5 0.951 0.940 0.951 0.914 0.949 0.932 0.950 0.894 0.950 0.894 0.951 0.832
20 0.950 0.899 0.949 0.836 0.949 0.841 0.949 0.753 0.950 0.635 0.953 0.512
50 0.949 0.797 0.949 0.688 0.952 0.653 0.955 0.514 0.961 0.355 0.968 0.228

Gamma
200 0 5 0.953 0.931 0.950 0.898 0.951 0.906 0.950 0.854 0.948 0.796 0.950 0.704

20 0.951 0.847 0.952 0.763 0.948 0.721 0.953 0.604 0.952 0.389 0.967 0.264
50 0.954 0.682 0.961 0.547 0.956 0.550 0.970 0.389 0.962 0.400 0.974 0.224

0.5 5 0.952 0.930 0.951 0.892 0.952 0.908 0.952 0.856 0.950 0.832 0.951 0.746
20 0.952 0.835 0.951 0.741 0.951 0.717 0.953 0.594 0.958 0.425 0.965 0.296
50 0.957 0.619 0.962 0.469 0.962 0.447 0.973 0.282 0.963 0.256 0.976 0.114

400 0 5 0.951 0.941 0.949 0.917 0.951 0.930 0.951 0.893 0.950 0.881 0.950 0.814
20 0.952 0.903 0.952 0.844 0.949 0.843 0.953 0.758 0.947 0.569 0.957 0.441
50 0.948 0.820 0.951 0.724 0.947 0.670 0.955 0.539 0.953 0.354 0.969 0.220

0.5 5 0.951 0.941 0.949 0.914 0.948 0.929 0.947 0.893 0.948 0.897 0.948 0.834
20 0.950 0.899 0.949 0.833 0.951 0.842 0.950 0.754 0.951 0.637 0.955 0.508
50 0.950 0.798 0.952 0.690 0.954 0.657 0.955 0.521 0.960 0.355 0.968 0.227



Appendix A An auxiliary result

The following result establishes some properties of the eigenvalues γi(z) and dii(z, λ),
defined respectively in Section 3 and in Section 5.1.

Lemma A.1. Assume that all eigenvalues of W are real.

(i) For any z ∈ Λ, the distinct eigenvalues γ1(z), γ2(z), ..., γN (z) of Cz are in in-
creasing order (i.e., j > i implies γj(z) > γi(z) for any z ∈ Λ). For any
z ∈ Λ, γ1(z) < 0, γN (z) > 0, and each γi(z), i = 2, ..., N − 1, changes sign ex-
actly once on Λ.

(ii) For N ≥ 2, d11(z, λ) < 0 and dNN (z, λ) > 0 for all z, λ ∈ Λ. If N > 2, dii(z, λ) > 0
if z < zi and dii(z, λ) < 0 if z > zi, for any λ ∈ Λ, and for i = 2, ..., N − 1, where
zi denotes the unique zero of γi(z) in Λ.

Proof. See Supplementary Material, Section S.6.

Appendix B Proofs

Proof of Lemma 1. See Supplementary Material, Section S.6.

Proof of Lemma 2. Recall that we are assuming that λ̂ML exists and is not trivial.
By Proposition S.1.1 in the Supplementary Material, l(λ)→ −∞ a.s. at the extremes of
Λ, and hence must a.s. have at least one maximum on Λ. Since the function l(λ) is a.s.
differentiable on Λ, all its maxima must be critical points. We now show that l(λ) has
a.s. exactly one maximum, and no other critical points, on Λ. The second derivative of
l(λ) can be written as

d2l(λ)

dλ2
=

−n(ac− b2)

(aλ2 − 2bλ+ c)2
+

n(b− aλ)2

(aλ2 − 2bλ+ c)2
− tr(G2

λ),

where a := y′W ′MXWy, b := y′W ′MXy, and c := y′MXy. But at any point where
s(λ) = 0,

n(b− aλ)2

(aλ2 − 2bλ+ c)2
=

1

n
[tr (Gλ)]2 ,

so that, at any critical point,

d2l(λ)

dλ2
=

−n(ac− b2)

(aλ2 − 2bλ+ c)2
+

1

n
[tr(Gλ)]2 − tr(G2

λ)

=
−n(ac− b2)

(aλ2 − 2bλ+ c)2
− tr(C2

λ). (B.1)

By the Cauchy-Schwarz inequality the first term in equation (B.1) is nonpositive. Hence,
if tr(C2

λ) > 0 for all λ ∈ Λ, we have that d2l(λ)/ dλ2 < 0 at every point where s(λ) = 0,
that is, l(λ) has a.s. exactly one point of maximum in Λ, and no other critical points.

Proof of Lemma 3. See Supplementary Material, Section S.6.

Proof of Theorem 1. If l(λ) is single-peaked on Λ, its single peak is to the left of a
point z ∈ Λ if and only s(z) is negative. That is, single-peakedness of l(λ) implies that
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the event λ̂ML ≤ z is identical to the event s(z) ≤ 0, and hence that Pr(λ̂ML ≤ z) =
Pr(s(z) ≤ 0), for any z ∈ Λ. By equation (3.6), Pr(s(z) ≤ 0) = Pr(y′S′zQzSzy ≤ 0),
since y′S′zMXSzy is a.s. positive for any z ∈ Λ. The desired result follows by Lemma 2.

Proof of Proposition 1. Let us start from part (i). Under the stated condition,
the diagonal blocks Mjj of the matrix M := H ′MXH vanish for any j > i. Since, by
Lemma A.1 (ii), djj (z, λ) < 0 for j ≤ i, z > zi, and any λ ∈ Λ, it follows by Proposition

S.3.3(i) in the Supplementary Material that Pr(λ̂ML ≤ z) = 1 for z ≥ zi. By the same
argument, part (ii) is proved by showing that in that case Pr(λ̂ML ≤ z) = 0 for z ≤ zi.

Proof of Proposition 2. See Supplementary Material, Section S.6.

Proof of Proposition 3. Follows immediately from the discussion in the text, and
the fact that H ′ỹ ∼ N(0, In)).

Proof of Proposition 4. According to Proposition 3, Pr(λ̂ML < z) = Pr(Q2/Q1 < 1),
for any z ∈ Λ, where Qi := u′iAiui, with ui ∼ N(0, Ivi), for i = 1, 2. By a trivial modi-
fication of the derivation in James (1964), the density of Qi, for z ∈ Λ \ {z2, ..., zN−1},
may be expressed as

pdf(qi) =
q
vi
2
−1

i exp
(
−1

2qiφi
)

2
vi
2 Γ(vi2 ) (detAi)

1
2

1F1

(
1

2
,
vi
2

;
1

2
qiφi

(
Ivi − (φiAi)

−1
))

, (B.2)

where φi is a positive constant, and 1F1 denotes a matrix-argument confluent hyper-
geometric function (see, e.g., Muirhead, 1982). If φi is chosen so that φiAi > Ivi , this
expresses the density as a mixture of central χ2 densities. The joint density of Q1 and
Q2 is

pdf(q1, q2) =
q
v1
2
−1

1 q
v2
2
−1

2 exp
(
−1

2(q1φ1 + φ2q2)
)

2
n
2 Γ(v12 )Γ(v22 ) (detA1 detA2)

1
2

× 1F1

(
1

2
,
v1

2
;
1

2
q1φ1

(
Iv1 − (φ1A1)−1

))
1F1

(
1

2
,
v2

2
;
1

2
q2φ2

(
Iv2 − (φ2A2)−1

))
.

Transforming to f := q2/q1 and q1, and integrating out q1 gives

pdf(f) =
Γ(n2 )f

v1
2
−1

Γ(v12 )Γ(v22 ) (detD1 detD2)
1
2

∞∑
j1,j2=0

(1
2)j1(1

2)j2(n2 )j1+j2

j1!j2!(v12 )j1(v22 )j2
f j1+

v1
2
−1

×
φj11 φ

j2
2 Cj1(Iv1 − (φ1A1)−1)Cj2

(
Iv2 − (φ2A2)−1

)
φ
j1+j2+n

2
1 (1 + φ2

φ1
f)j1+j2+n

2

.

The integral over 0 < f < 1 is thus, transforming to φ2
φ1
f,

Pr(λ̂ML < z) =
1

(det(φ1A1) det(φ2A2))
1
2

×
∞∑

j1,j2=0

(1
2)j1(1

2)j2
j1!j2!

Cj1(In − (φ1A1)−1)Cj2
(
In − (φ2A2)−1

)
Pr

(
fv2+2j1,v1+2j2 <

φ2

φ1

)
,
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where fp,q denotes the ratio of two independent χ2 variates, fp,q := χ2
p/χ

2
q . This yields

the result stated.

Proof of Proposition 5. For the pure balanced Group Interaction model, W is
symmetric, N = 2, n1 = r, n2 = r(m − 1), ω1 = 1, ω2 = −1/(m − 1). Also, by direct
computation, tr(Gz)/n = (rm)−1 [r/(1−z)−r(m−1)/ (z +m− 1)] = z/[(1−z)(z+m−
1)], and hence d11(z) = 2(m−1)(1−z)/[(1−λ)2(z+m−1)] and d22(z, λ) = −2(z+m−
1)/[(λ+m−1)2(1−z)]. Equation (5.6) now gives Pr(λ̂ML ≤ z) = Pr(Fr,r(m−1) ≤ c(z, λ)).
On differentiating with respect to z, we obtain

pdf λ̂ML
(z;λ) = ċ(z, λ)pdfFr,r(m−1)

(c(z, λ)) ,

which yields the stated expression for pdf λ̂ML
(z;λ).

Proof of Proposition 6. For the row-standardized Complete Bipartite model an
orthonormal eigenvector matrix H of W is

H =

[
ιp/
√
n Lp,p−1 0 ιp/

√
n

−ιq/
√
n 0 Lq,q−1 ιq/

√
n

]
,

where Lp,p−1 is a p × (p − 1) matrix such that L′p,p−1ιp = 0 and L′p,p−1Lp,p−1 = Ip−1.
Thus,

M := H ′MιnH = diag

(
4pq

n2
, In−2, 0

)
.

As expected from Proposition S.3.3(i) in the Supplementary Material, this is block-
diagonal since MXW is symmetric in this model, and in addition the (n, n) block also
vanishes. The mean of x := H−1ỹ, partitioned conformably to M , is β(0, 0,

√
n)′.

Therefore, by equation (S.3.5) in the Supplementary Material, when ε ∼ SMN(0, In),

Pr(λ̂ML ≤ z) = Pr
(
d11(z, λ)χ2

1 + d22(z, λ)χ2
n−2 ≤ 0

)
. (B.3)

If z ∈ [0, 1), then both d11(z, λ) and d22(z, λ) are non-positive by Lemma A.1 (ii), for
any λ ∈ Λ, and hence Pr(λ̂ML ≤ z) = 1. Next, from equation (B.3), Pr(λ̂ML ≤ z) =
Pr
(
−2
(
φ2χ

2
1 + 2zχ2

n−2

)
≤ 0
)
, where φ2 := 2z. This yields the stated result for the

cdf when z ∈ (−1, 0). The density is obtained by differentiation, as in the proof of
Proposition 5.
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Boucher, V., Bramoullé, Y., Djebbari, H., and Fortin, B. (2014). Do peers affect student

achievement? Evidence from Canada using group size variation, Journal of Applied Econo-

metrics 29, 91–109.
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