331 research outputs found

    The unimportance of the spurious root of time integration algorithms for structural dynamics

    Full text link
    Most commonly used second-order-accurate, dissipative time integration algorithms for structural dynamics possess a spurious root. For an algorithm to be accurate, it has been suggested that the spurious root must be small and ideally be zero in the low-frequency limit. In the paper we show that good accuracy can be achieved even if the spurious root does not tend towards zero in the low-frequency limit. This permits more flexibility in the design of time integration algorithms. As an example, we present an algorithm that has greater accuracy than several other dissipative algorithms even though for all frequencies its spurious root is non-zero. We also show that the degraded performance of the Bazzi-Ρ algorithm is not due to its non-zero spurious root.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50422/1/1640100803_ftp.pd

    A Finite Element Computation of the Gravitational Radiation emitted by a Point-like object orbiting a Non-rotating Black Hole

    Full text link
    The description of extreme-mass-ratio binary systems in the inspiral phase is a challenging problem in gravitational wave physics with significant relevance for the space interferometer LISA. The main difficulty lies in the evaluation of the effects of the small body's gravitational field on itself. To that end, an accurate computation of the perturbations produced by the small body with respect the background geometry of the large object, a massive black hole, is required. In this paper we present a new computational approach based on Finite Element Methods to solve the master equations describing perturbations of non-rotating black holes due to an orbiting point-like object. The numerical computations are carried out in the time domain by using evolution algorithms for wave-type equations. We show the accuracy of the method by comparing our calculations with previous results in the literature. Finally, we discuss the relevance of this method for achieving accurate descriptions of extreme-mass-ratio binaries.Comment: RevTeX 4. 18 pages, 8 figure

    Dynamic behaviour analysis of an english-bond masonry prototype using a homogenized-based discrete FE model

    Get PDF
    Full Finite Element strategies (the so called micro- and macro- models) are still nowadays the most used ones for the study of large masonry structures. However, macro-modelling still lacks accuracy at a meso-scale in terms of damage localization. On the other hand, micro-models are rather computational demanding and require a cumbersome modelling stage. Thus, homogenization-based frameworks give considerable advantages. Moreover, the study of English bond masonry appears to be disregarded in comparison to the running bond one. On this behalf, a two-step procedure based on homogenization theory is herein presented for the dynamic study of English-bond masonry structures. The presented homogenization approach uses two models at a micro-scale: (i) a plane-stress FE discretization within the concepts of Kirchhoff-Love plate theory; and (ii) a three-dimensional micro-model accounting with the mortar joint discontinuity existent at the thickness direction. Bricks are meshed with elastic elements with linear interpolation and joints are reduced to interfaces which obey to the nonlinear behaviour described by the so-called combined cracking-shearing-crushing model. The procedure allows obtaining homogenized bending moment/torque curvature relationships to be used at a structural level within a FE discrete model implemented in a commercial code. The model relies in rigid quadrilateral elements interconnected by homogenized bending/torque nonlinear springs. The framework is used to study the dynamic behaviour of an English-bond masonry wall benchmark. A macroscopic strategy is also considered to enrich the study. The numerical results are compared with the experimental data and a good agreement has been found.FCT (Portuguese Foundation for Science and Technology), within ISISE, scholarship SFRH/BD/95086/2013. This work was also partly financed by FEDER funds through the Competitivity Factors Operational Programme - COMPETE and by national funds through FCT – Foundation for Science and Technology within the scope of the project POCI-01-0145-FEDER-00763

    Presenting a comprehensive multi-scale evaluation framework for participatory modelling programs: a scoping review

    Get PDF
    INTRODUCTION: Systems modelling and simulation can improve understanding of complex systems to support decision making, better managing system challenges. Advances in technology have facilitated accessibility of modelling by diverse stakeholders, allowing them to engage with and contribute to the development of systems models (participatory modelling). However, despite its increasing applications across a range of disciplines, there is a growing need to improve evaluation efforts to effectively report on the quality, importance, and value of participatory modelling. This paper aims to identify and assess evaluation frameworks, criteria, and/or processes, as well as to synthesize the findings into a comprehensive multi-scale framework for participatory modelling programs. MATERIALS AND METHODS: A scoping review approach was utilized, which involved a systematic literature search via Scopus in consultation with experts to identify and appraise records that described an evaluation framework, criteria, and/or process in the context of participatory modelling. This scoping review is registered with the Open Science Framework. RESULTS: The review identified 11 studies, which varied in evaluation purposes, terminologies, levels of examination, and time points. The review of studies highlighted areas of overlap and opportunities for further development, which prompted the development of a comprehensive multi-scale evaluation framework to assess participatory modelling programs across disciplines and systems modelling methods. The framework consists of four categories (Feasibility, Value, Change/Action, Sustainability) with 30 evaluation criteria, broken down across project-, individual-, group- and system-level impacts. DISCUSSION & CONCLUSION: The presented novel framework brings together a significant knowledge base into a flexible, cross-sectoral evaluation effort that considers the whole participatory modelling process. Developed through the rigorous synthesis of multidisciplinary expertise from existing studies, the application of the framework can provide the opportunity to understand practical future implications such as which aspects are particularly important for policy decisions, community learning, and the ongoing improvement of participatory modelling methods

    Interaction effects at the magnetic-field induced metal-insulator transition in Si/SiGe superlattices

    Full text link
    A metal-insulator transition was induced by in-plane magnetic fields up to 27 T in homogeneously Sb-doped Si/SiGe superlattice structures. The localisation is not observed for perpendicular magnetic fields. A comparison with magnetoconductivity investigations in the weakly localised regime shows that the delocalising effect originates from the interaction-induced spin-triplet term in the particle-hole diffusion channel. It is expected that this term, possibly together with the singlet particle-particle contribution, is of general importance in disordered n-type Si bulk and heterostructures.Comment: 5 pages, 3 figures, Solid State Communications, in prin

    Using advocacy and data to strengthen political accountability in maternal and newborn health in Africa

    Get PDF
    AbstractAccountability mechanisms help governments and development partners fulfill the promises and commitments they make to global initiatives such as the Millennium Development Goals and the Global Strategy on Women’s and Children’s health, and regional or national strategies such as the Campaign for the Accelerated Reduction in Maternal Mortality in Africa (CARMMA). But without directed pressure, comparative data and tools to provide insight into successes, failures, and overall results, accountability fails. The analysis of accountability mechanisms in five countries supported by the Evidence for Action program shows that accountability is most effective when it is connected across global and national levels; civil society has a central and independent role; proactive, immediate and targeted implementation mechanisms are funded from the start; advocacy for accountability is combined with local outreach activities such as blood drives; local and national champions (Presidents, First Ladies, Ministers) help draw public attention to government performance; scorecards are developed to provide insight into performance and highlight necessary improvements; and politicians at subnational level are supported by national leaders to effect change. Under the Sustainable Development Goals, accountability and advocacy supported by global and regional intergovernmental organizations, constantly monitored and with commensurate retribution for nonperformance will remain essential

    Engineering simulations of a super-complex cultural heritage building: Ica Cathedral in Peru

    Get PDF
    The Cathedral of Ica, Peru, is one of the four prototype buildings involved in the ongoing Seismic Retrofitting Project, initiative of the Getty Conservation Institute. The complex historical building, which was heavily damaged by earthquakes in 2007 and 2009, can be divided into two substructures: an external masonry envelope and an internal timber frame built by a construction method known as quincha technique. This study makes use of the information available in literature and the results obtained from experimental campaigns performed by Pontificia Universidad Catlica del PerA and University of Minho. Nonlinear behaviour of masonry is simulated in the numerical models by considering specified compressive and tensile softening behaviour, while isotropic homogeneous and linear behaviour is adopted for modelling timber with appropriate assumptions on the connections. A single representative bay was initially studied by performing linear elastic analysis and verifying the compliance with the various criteria specified by the applicable normative to discuss the actual failure of Ica Cathedral. Afterwards, the structural behaviour of the two substructures composing the Cathedral is evaluated independently. Finally, the interaction of these two substructures is investigated by performing structural analysis on the entire structure of Ica Cathedral. Several structural analysis techniques, including eigenvalue, nonlinear static and dynamic analyses, are performed in order to: (1) evaluate the dominant mode shapes of the structure; (2) validate the numerical models by reproducing the structural damage observed in situ; (3) estimate the structural performance; and (4) identify the main failure mechanisms.This work was carried out with funding from the Getty Seismic Retrofitting Project under the auspices of the Getty Conservation Institute (GCI). This work is also partially financed by FEDER funds through the Competitivity Factors Operational Programme-COMPETE and by national funds through FCT-Foundation for Science and Technology within the scope of the projects POCI-01-0145-FEDER-007633 and PTDC/ECM-EST/2777/2014.info:eu-repo/semantics/publishedVersio
    • …
    corecore