21 research outputs found
The development and optimisation of Nanobody based electrochemical immunosensors for IgG
Biosensors are increasingly heralded for their potential to create inexpensive diagnostic devices which are sensitive, selective and easy to use. One of the key categories of biosensor are immunosensors, which have historically used antibodies as bioreceptors. Though widely used, antibodies bring inherent limitations such as variability, limited stability and their reliance on animal sources. This has led to the development of alternative immuno-reagents such as non-antibody binding proteins (NABPs). These are low molecular weight proteins which largely avoid the aforementioned advantages of antibodies. They are commonly produced by bacteria enabling the use of DNA technology to manipulate bioreceptors at the molecular level. Single chain VHHs (commonly known as nanobodies) are an antibody derived NABP adapted from camelid heavy chain antibodies which are the isolated binding domain. Whilst nanobodies have been used for diagnostic and therapeutic applications, they have limited demonstration in biosensors. In this study, both antibodies and nanobodies were used to construct a biosensor. In addition nanobody performance was optimised by introducing a novel peptide spacer. The role of nanobody orientation and spacing was thus investigated and spacer length was optimised, leading to an increase in the sensitivity of the biosensor
The preclinical pharmacology of the high affinity anti-IL-6R Nanobody (R) ALX-0061 supports its clinical development in rheumatoid arthritis
Introduction: The pleiotropic cytokine interleukin-6 (IL-6) plays an important role in the pathogenesis of different diseases, including rheumatoid arthritis (RA). ALX-0061 is a bispecific Nanobody (R) with a high affinity and potency for IL-6 receptor (IL-6R), combined with an extended half-life by targeting human serum albumin. We describe here the relevant aspects of its in vitro and in vivo pharmacology. Methods: ALX-0061 is composed of an affinity-matured IL-6R-targeting domain fused to an albumin-binding domain representing a minimized two-domain structure. A panel of different in vitro assays was used to characterize the biological activities of ALX-0061. The pharmacological properties of ALX-0061 were examined in cynomolgus monkeys, using plasma levels of total soluble (s)IL-6R as pharmacodynamic marker. Therapeutic effect was evaluated in a human IL-6-induced acute phase response model in the same species, and in a collagen-induced arthritis (CIA) model in rhesus monkeys, using tocilizumab as positive control. Results: ALX-0061 was designed to confer the desired pharmacological properties. A 200-fold increase of target affinity was obtained through affinity maturation of the parental domain. The high affinity for sIL-6R (0.19 pM) translated to a concentration-dependent and complete neutralization of sIL-6R in vitro. In cynomolgus monkeys, ALX-0061 showed a dose-dependent and complete inhibition of hIL-6-induced inflammatory parameters, including plasma levels of C-reactive protein (CRP), fibrinogen and platelets. An apparent plasma half-life of 6.6 days was observed after a single intravenous administration of 10 mg/kg ALX-0061 in cynomolgus monkeys, similar to the estimated expected half-life of serum albumin. ALX-0061 and tocilizumab demonstrated a marked decrease in serum CRP levels in a non-human primate CIA model. Clinical effect was confirmed in animals with active drug exposure throughout the study duration. Conclusions: ALX-0061 represents a minimized bispecific biotherapeutic of 26 kDa, nearly six times smaller than monoclonal antibodies. High in vitro affinity and potency was demonstrated. Albumin binding as a half-life extension technology resulted in describable and expected pharmacokinetics. Strong IL-6R engagement was shown to translate to in vivo effect in non-human primates, demonstrated via biomarker deregulation as well as clinical effect. Presented results on preclinical pharmacological properties of ALX-0061 are supportive of clinical development in RA
Generation and characterization of inhibitory nanobodies towards thrombin activatable fibrinolysis inhibitor
Background and objective: As activated thrombin-activatable fibrinolysis inhibitor (TAFIa) is a potent antifibrinolytic enzyme, the development of TAFI inhibitors is a new promising approach in the development of profibrinolytic drugs. We, therefore, aimed to generate nanobodies, camelid-derived single-domain antibodies towards TAFI. Methods and results: This study reports the generation and characterization of a panel of 22 inhibitory nanobodies. This panel represents a wide diversity in mechanisms for interference with the functional properties of TAFI as the nanobodies interfere with various modes of TAFI activation, TAFIa activity and/or TAFI zymogen activity. Nanobodies inhibiting TAFIa activity and thrombin/thrombomodulin-mediated TAFI activation revealed pro. brinolytic properties in a clot lysis experiment with exogenously added thrombomodulin (TM), whereas nanobodies inhibiting plasmin-mediated TAFI activation only revealed pro. brinolytic properties in a clot lysis experiment without TM. The results of in vitro clot lysis experiments provided evidence that inhibitory nanobodies penetrate the clot better compared with inhibitory monoclonal antibodies. Conclusions: These data suggest that the generated nanobodies are potent TAFI inhibitors and are a step forward in the development of a pro. brinolytic drug. They might also be an excellent tool to unravel the role of the physiological activators of TAFI in various pathophysiological processes.status: publishe
Transcriptome analysis revealed unique genes as targets for the anti-inflammatory action of activated protein C in human macrophages
BACKGROUND: Activated protein C (APC) has been introduced as a therapeutic agent for treatment of patients with severe sepsis due to its unique anticoagulant and anti-inflammatory properties in the vascular system. In this study we investigated novel targets for the anti-inflammatory action of APC in human macrophages.
METHODS: Using a genome-wide approach, effects of APC on the expression profile in inflammatory activated human macrophages were analyzed.
RESULTS: We identified, for the first time, genes that are specifically regulated by APC under inflammatory conditions, such as chromatin binding protein 4B (CHMP4B) and p300/CBP-associated factor (PCAF), thus indicating a role of APC in the epigenetic control of gene transcription. A functional assay showed the influence of APC in the acetyltransferase/deacetylase activity of nuclear extracts from inflamed macrophages.
CONCLUSION: Our data sheds new light on APC targets in inflammation and opens new lines of investigation that may be explored in order to further elucidate its unique molecule properties