2,278 research outputs found

    Evidence for prelocalization of cytoplasmic factors affecting gene activation in early embryogenesis

    Get PDF
    Differentiation begins early in embryogenesis as different genes become active in different cells. Within the closed system of the early embryo, equal genomes thus direct the creation of diverse cell types. Though the nuclei of these cells contain complete copies of the same genome,(1,2) the nucleoplasmic and cytoplasmic environments of these genomes are not the same, as a result of the distribution of cleavage nuclei into diverse areas of egg cytoplasm early in the cleavage process. In some cases the fate of these nuclei, i.e., the type of differentiated cell to which they or their descendants give rise, has been seen to depend on the area of cytoplasm in which they come to lie

    Statistical Mechanics of Glass Formation in Molecular Liquids with OTP as an Example

    Full text link
    We extend our statistical mechanical theory of the glass transition from examples consisting of point particles to molecular liquids with internal degrees of freedom. As before, the fundamental assertion is that super-cooled liquids are ergodic, although becoming very viscous at lower temperatures, and are therefore describable in principle by statistical mechanics. The theory is based on analyzing the local neighborhoods of each molecule, and a statistical mechanical weight is assigned to every possible local organization. This results in an approximate theory that is in very good agreement with simulations regarding both thermodynamical and dynamical properties

    Numerical model for granular compaction under vertical tapping

    Full text link
    A simple numerical model is used to simulate the effect of vertical taps on a packing of monodisperse hard spheres. Our results are in agreement with an experimantal work done in Chicago and with other previous models, especially concerning the dynamics of the compaction, the influence of the excitation strength on the compaction efficiency, and some ageing effects. The principal asset of the model is that it allows a local analysis of the packings. Vertical and transverse density profiles are used as well as size and volume distributions of the pores. An interesting result concerns the appearance of a vertical gradient in the density profiles during compaction. Furthermore, the volume distribution of the pores suggests that the smallest pores, ranging in size between a tetrahedral and an octahedral site, are not strongly affected by the tapping process, in contrast to the largest pores which are more sensitive to the compaction of the packing.Comment: 8 pages, 15 figures (eps), to be published in Phys. Rev. E. Some corrections have been made, especially in paragraph IV

    Packing of Compressible Granular Materials

    Full text link
    3D Computer simulations and experiments are employed to study random packings of compressible spherical grains under external confining stress. Of particular interest is the rigid ball limit, which we describe as a continuous transition in which the applied stress vanishes as (\phi-\phi_c)^\beta, where \phi is the (solid phase) volume density. This transition coincides with the onset of shear rigidity. The value of \phi_c depends, for example, on whether the grains interact via only normal forces (giving rise to random close packings) or by a combination of normal and friction generated transverse forces (producing random loose packings). In both cases, near the transition, the system's response is controlled by localized force chains. As the stress increases, we characterize the system's evolution in terms of (1) the participation number, (2) the average force distribution, and (3) visualization techniques.Comment: 4 pages, 7 figures, to appear in Phys. Rev. Let

    Using seasonal rainfall clusters to explain the interannual variability of the rain belt over the Greater Horn of Africa

    Get PDF
    The seasonal cycle of rainfall over the Greater Horn of Africa (GHA) is dominated by the latitudinal migration and activity of the tropical rain belt (TRB). The TRB exhibits high interannual variability in the GHA and the reasons for the recent dry period in the Long Rains (March–May) are poorly understood. In addition, few studies have addressed the rainfall fluctuations during the Msimu Rains (Dec.–Mar.) in the southern GHA region. Interannual variations of the seasonal cycle of the TRB between 1981 and 2018 were analysed using two statistical indices. The Rainfall Cluster Index (RCI) describes the seasonal cycle as a succession of six characteristic rainfall patterns, while the Seasonal Location Index (SLI) captures the latitudinal location of the TRB. The SLI and RCI depict the full seasonal cycle of the TRB supporting interpretations of the interannual variations and trends. The Msimu Rains are dominated by two clusters with opposite rainfall characteristics between the Congo Basin and Tanzania. The associated anomalies in moisture flux and divergence indicate variations in the location of the TRB originating from an interplay between low‐level air flows from the Atlantic and Indian Oceans and tropical and subtropical teleconnections. The peak period of the Long Rains shows a complex composition of five clusters, which is tightly connected to intraseasonal and interannual variability of latitudinal locations of the TRB. A persistent location of the TRB near the equator, evidenced in a frequent occurrence of a cluster related to an anomalously weak Walker circulation, is associated with wet conditions over East Africa. Dry Long Rains are associated with strong and frequent latitudinal variations of the TRB position with a late onset and intermittent rainfall. These results offer new opportunities to understand recent variability and trends in the GHA region

    Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour

    Get PDF
    The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of pseudopod position in low chemoattractant gradients and-unexpectedly-lateral pseudopod initiation in high gradients. To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between the cell's direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod behaviour, more than generation of new pseudopods or actin polymerization by chemoattractant

    The Loss of Telomerase Activity in Highly Differentiated CD8+CD28−CD27− T Cells Is Associated with Decreased Akt (Ser473) Phosphorylation

    Get PDF
    The enzyme telomerase is essential for maintaining the replicative capacity of memory T cells. Although CD28 costimulatory signals can up-regulate telomerase activity, human CD8 + T cells lose CD28 expression after repeated activation. Nevertheless, telomerase is still inducible in CD8 + CD28 − T cells. To identify alternative costimulatory pathways that may be involved, we introduced chimeric receptors containing the signaling domains of CD28, CD27, CD137, CD134, and ICOS in series with the CD3 zeta (ζ) chain into primary human CD8 + T cells. Although CD3 ζ-chain signals alone were ineffective, triggering of all the other constructs induced proliferation and telomerase activity. However, not all CD8 + CD28 − T cells could up-regulate this enzyme. The further fractionation of CD8 + CD28 − T cells into CD8 + CD28 − CD27 + and CD8 + CD28 − CD27 − subsets showed that the latter had significantly shorter telomeres and extremely poor telomerase activity. The restoration of CD28 signaling in CD8 + CD28 − CD27 − T cells could not reverse the low telomerase activity that was not due to decreased expression of human telomerase reverse transcriptase, the enzyme catalytic subunit. Instead, the defect was associated with decreased phosphorylation of the kinase Akt, that phosphorylates human telomerase reverse transcriptase to induce telomerase activity. Furthermore, the defective Akt phosphorylation in these cells was specific for the Ser 473 but not the Thr 308 phosphorylation site of this molecule. Telomerase down-regulation in highly differentiated CD8 + CD28 − CD27 − T cells marks their inexorable progress toward a replicative end stage after activation. This limits the ability of memory CD8 + T cells to be maintained by continuous proliferation in vivo

    Biographical Narratives of Encounter: The Significance of Mobility and Emplacement in Shaping Attitudes towards Difference

    Get PDF
    This paper is located within work in urban studies about the significance of contact with difference as a means for reducing prejudice and achieving social change. Recent approaches, influenced by theories of affect, have emphasised non-conscious everyday negotiations of difference in the city. In this paper it is argued that such approaches lose sight of the significance of the subject: of the reflective judgements of ‘others’ made by individuals; of our ability to make decisions around the control of our feelings and identifications; and of the significance of personal pasts and collective histories in shaping the ways we perceive and react to encounters. Rather, this paper uses a biographical approach focusing on interviewees’ narratives of encounter. Through its attention to processes of mobility and emplacement, it contributes to debates about when contact with difference matters by highlighting the importance of everyday social normativities in the production of moral dispositions

    Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions

    Full text link
    We evaluate the virial coefficients B_k for k<=10 for hard spheres in dimensions D=2,...,8. Virial coefficients with k even are found to be negative when D>=5. This provides strong evidence that the leading singularity for the virial series lies away from the positive real axis when D>=5. Further analysis provides evidence that negative virial coefficients will be seen for some k>10 for D=4, and there is a distinct possibility that negative virial coefficients will also eventually occur for D=3.Comment: 33 pages, 12 figure
    corecore