342 research outputs found

    POKER: Estimating the power spectrum of diffuse emission with complex masks and at high angular resolution

    Full text link
    We describe the implementation of an angular power spectrum estimator in the flat sky approximation. POKER (P. Of k EstimatoR) is based on the MASTER algorithm developped by Hivon and collaborators in the context of CMB anisotropy. It works entirely in discrete space and can be applied to arbitrary high angular resolution maps. It is therefore particularly suitable for current and future infrared to sub-mm observations of diffuse emission, whether Galactic or cosmological.Comment: Astronomy and Astrophysics, in pres

    Instability of the massive Klein-Gordon field on the Kerr spacetime

    Full text link
    We investigate the instability of the massive scalar field in the vicinity of a rotating black hole. The instability arises from amplification caused by the classical superradiance effect. The instability affects bound states: solutions to the massive Klein-Gordon equation which tend to zero at infinity. We calculate the spectrum of bound state frequencies on the Kerr background using a continued fraction method, adapted from studies of quasinormal modes. We demonstrate that the instability is most significant for the l=1l = 1, m=1m = 1 state, for Mμ≲0.5M \mu \lesssim 0.5. For a fast rotating hole (a=0.99a = 0.99) we find a maximum growth rate of τ−1≈1.5×10−7(GM/c3)−1\tau^{-1} \approx 1.5 \times 10^{-7} (GM/c^3)^{-1}, at Mμ≈0.42M \mu \approx 0.42. The physical implications are discussed.Comment: Added references. 27 pages, 7 figure

    Kaluza-Klein Dark Matter and Galactic Antiprotons

    Get PDF
    Extra dimensions offer new ways to address long-standing problems in beyond the standard model particle physics. In some classes of extra-dimensional models, the lightest Kaluza-Klein particle is a viable dark matter candidate. In this work, we study indirect detection of Kaluza-Klein dark matter via its annihilation into antiprotons. We use a sophisticated galactic cosmic ray diffusion model whose parameters are fully constrained by an extensive set of experimental data. We discuss how fluxes of cosmic antiprotons can be used to exclude low Kaluza-Klein masses.Comment: 14 pages, 7 figures, 3 table

    Bulk and Brane Decay of a (4+n)-Dimensional Schwarzschild-De-Sitter Black Hole: Scalar Radiation

    Full text link
    In this paper, we extend the idea that the spectrum of Hawking radiation can reveal valuable information on a number of parameters that characterize a particular black hole background - such as the dimensionality of spacetime and the value of coupling constants - to gain information on another important aspect: the curvature of spacetime. We investigate the emission of Hawking radiation from a D-dimensional Schwarzschild-de-Sitter black hole emitted in the form of scalar fields, and employ both analytical and numerical techniques to calculate greybody factors and differential energy emission rates on the brane and in the bulk. The energy emission rate of the black hole is significantly enhanced in the high-energy regime with the number of spacelike dimensions. On the other hand, in the low-energy part of the spectrum, it is the cosmological constant that leaves a clear footprint, through a characteristic, constant emission rate of ultrasoft quanta determined by the values of black hole and cosmological horizons. Our results are applicable to "small" black holes arising in theories with an arbitrary number and size of extra dimensions, as well as to pure 4-dimensional primordial black holes, embedded in a de Sitter spacetime.Comment: 31 pages, latex file, data files available at http://lpsc.in2p3.fr/ams/greybody/ some clarifying comments and references added, typos corrected, version to appear in Phys. Rev.

    Kerr-Gauss-Bonnet Black Holes: An Analytical Approximation

    Full text link
    Gauss-Bonnet gravity provides one of the most promising frameworks to study curvature corrections to the Einstein action in supersymmetric string theories, while avoiding ghosts and keeping second order field equations. Although Schwarzschild-type solutions for Gauss-Bonnet black holes have been known for long, the Kerr-Gauss-Bonnet metric is missing. In this paper, a five dimensional Gauss-Bonnet approximation is analytically derived for spinning black holes and the related thermodynamical properties are briefly outlined.Comment: 5 pages, 1 figur

    Bound states of spin-half particles in a static gravitational field close to the black hole field

    Full text link
    We consider the bound-state energy levels of a spin-1/2 fermion in the gravitational field of a near-black hole object. In the limit that the metric of the body becomes singular, all binding energies tend to the rest-mass energy (i.e. total energy approaches zero). We present calculations of the ground state energy for three specific interior metrics (Florides, Soffel and Schwarzschild) for which the spectrum collapses and becomes quasi-continuous in the singular metric limit. The lack of zero or negative energy states prior to this limit being reached prevents particle pair production occurring. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides and Soffel metrics the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the centre. The behaviour of the energy level spectrum is discussed in the context of the semi-classical approximation and using general properties of the metric.Comment: 16 pages, 6 Figures. Submitted to General Relativity and Gravitatio

    Spherically symmetric Einstein-Maxwell theory and loop quantum gravity corrections

    Full text link
    Effects of inverse triad corrections and (point) holonomy corrections, occuring in loop quantum gravity, are considered on the properties of Reissner-Nordstr\"om black holes. The version of inverse triad corrections with unmodified constraint algebra reveals the possibility of occurrence of three horizons (over a finite range of mass) and also shows a mass threshold beyond which the inner horizon disappears. For the version with modified constraint algebra, coordinate transformations are no longer a good symmetry. The covariance property of spacetime is regained by using a \emph{quantum} notion of mapping from phase space to spacetime. The resulting quantum effects in both versions of these corrections can be associated with renormalization of either mass, charge or wave function. In neither of the versions, Newton's constant is renormalized. (Point) Holonomy corrections are shown to preclude the undeformed version of constraint algebra as also a static solution, though time-independent solutions exist. A possible reason for difficulty in constructing a covariant metric for these corrections is highlighted. Furthermore, the deformed algebra with holonomy corrections is shown to imply signature change.Comment: 38 pages, 9 figures, matches published versio

    Probing Loop Quantum Gravity with Evaporating Black Holes

    Full text link
    This letter aims at showing that the observation of evaporating black holes should allow distinguishing between the usual Hawking behavior and Loop Quantum Gravity (LQG) expectations. We present a full Monte-Carlo simulation of the evaporation in LQG and statistical tests that discriminate between competing models. We conclude that contrarily to what was commonly thought, the discreteness of the area in LQG leads to characteristic features that qualify evaporating black holes as objects that could reveal quantum gravity footprints.Comment: 5 pages, 3 figures. Version accpeted by Phys. Rev. Let
    • …
    corecore