1,117 research outputs found

    Short-Baseline Electron Neutrino Disappearance, Tritium Beta Decay and Neutrinoless Double-Beta Decay

    Full text link
    We consider the interpretation of the MiniBooNE low-energy anomaly and the Gallium radioactive source experiments anomaly in terms of short-baseline electron neutrino disappearance in the framework of 3+1 four-neutrino mixing schemes. The separate fits of MiniBooNE and Gallium data are highly compatible, with close best-fit values of the effective oscillation parameters Delta m^2 and sin^2 2 theta. The combined fit gives Delta m^2 >~ 0.1 eV^2 and 0.11 < sin^2 2 theta < 0.48 at 2 sigma. We consider also the data of the Bugey and Chooz reactor antineutrino oscillation experiments and the limits on the effective electron antineutrino mass in beta-decay obtained in the Mainz and Troitsk Tritium experiments. The fit of the data of these experiments limits the value of sin^2 2 theta below 0.10 at 2 sigma. Considering the tension between the neutrino MiniBooNE and Gallium data and the antineutrino reactor and Tritium data as a statistical fluctuation, we perform a combined fit which gives Delta m^2 \simeq 2 eV and 0.01 < sin^2 2 theta < 0.13 at 2 sigma. Assuming a hierarchy of masses m_1, m_2, m_3 << m_4, the predicted contributions of m_4 to the effective neutrino masses in beta-decay and neutrinoless double-beta-decay are, respectively, between about 0.06 and 0.49 and between about 0.003 and 0.07 eV at 2 sigma. We also consider the possibility of reconciling the tension between the neutrino MiniBooNE and Gallium data and the antineutrino reactor and Tritium data with different mixings in the neutrino and antineutrino sectors. We find a 2.6 sigma indication of a mixing angle asymmetry.Comment: 14 pages; final version published in Phys.Rev.D82:053005,201

    Squeezed Neutrino Oscillations in Quantum Field Theory

    Get PDF
    By resorting to recent results on fermion mixing which show that the Fock space of definite flavor states is unitarily inequivalent to the Fock space of definite mass states, we discuss the phenomenological implications on the neutrino oscillation formula. For finite momentum the oscillation amplitude is depressed, or "squeezed", by a momentum dependent factor. In the relativistic limit the conventional oscillation formula is recovered.Comment: 12 pages, LaTex, 1 figure ( on request ), in press on Phys. Lett. B. (minor changes: reformatted

    Electromagnetic properties of neutrinos

    Full text link
    A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.Comment: The talk presented by A.Studenikin at the International Conference on Topics in Astroparticle and Underground Physics, Rome (Italy), July 1-5, 200

    What can the SNO Neutral Current Rate teach us about the Solar Neutrino Anomaly

    Get PDF
    We investigate how the anticipated neutral current rate from SNOSNO will sharpen our understanding of the solar neutrino anomaly. Quantitative analyses are performed with representative values of this rate in the expected range of 0.81.20.8 - 1.2. This would provide a 510σ5 - 10 \sigma signal for νe\nu_e transition into a state containing an active neutrino component. Assuming this state to be purely active one can estimate both the 8B^8B neutrino flux and the νe\nu_e survival probability to a much higher precision than currently possible. Finally the measured value of the NCNC rate will have profound implications for the mass and mixing parameters of the solar neutrino oscillation solution.Comment: Brief discussion on the first NC result from SNO added; final version to be published in the MPL

    Probing Sterile Neutrino Parameters with Double Chooz, Daya Bay and RENO

    Full text link
    In this work, we present a realistic analysis of the potential of the present-day reactor experiments Double Chooz, Daya Bay and RENO for probing the existence of sterile neutrinos. We present exclusion regions for sterile oscillation parameters for each of these experiments, using simulations with realistic estimates of systematic errors and detector resolutions, and compare the sterile parameter sensitivity regions we obtain with the existing bounds from other reactor experiments. We find that these experimental set-ups give significant bounds on the parameter \Theta_{ee} especially in the low sterile oscillation region 0.01 < \Delta m_{41}^2 < 0.05 eV^2. These bounds can add to our understanding of the sterile neutrino sector since there is still a tension in the allowed regions from different experiments for sterile parameters.Comment: 12 pages, 5 figure

    Group velocity of neutrino waves

    Get PDF
    We follow up on the analysis of Mecozzi and Bellini (arXiv:1110:1253v1) where they showed, in principle, the possibility of superluminal propagation of neutrinos, as indicated by the recent OPERA result. We refine the analysis by introducing wave packets for the superposition of energy eigenstates and discuss the implications of their results with realistic values for the mixing and mass parameters in a full three neutrino mixing scenario. Our analysis shows the possibility of superluminal propagation of neutrino flavour in a very narrow range of neutrino parameter space. Simultaneously this reduces the number of observable events drastically. Therefore, the OPERA result cannot be explained in this frame-work.Comment: 10 pages revtex with 2 figures. Important changes have been made; in particular, it has been revised to include a discussion on the nature of the measurement and its impact on the resul

    Gopi: compiling linear and static channels in go

    Get PDF
    PTDC/CCI-COM/32166/2017We identify two important features to enhance the design of communication protocols specified in the pi-calculus, that are linear and static channels, and present a compiler, named GoPi, that maps high level specifications into executable Go programs. Channels declared as linear are deadlock-free, while the scope of static channels, which are bound by a hide declaration, does not enlarge at runtime; this is enforced statically by means of type inference, while specifications do not include annotations. Well-behaved processes are transformed into Go code that supports non-deterministic synchronizations and race-freedom. We sketch two main examples involving protection against message forwarding, and forward secrecy, and discuss the features of the tool, and the generated code. We argue that GoPi can support academic activities involving process algebras and formal models, which range from the analysis and testing of concurrent processes for research purposes to teaching formal languages and concurrent systems.publishersversionpublishe

    Local demands on sterile neutrinos

    Full text link
    In a model independent manner, we explore the local implications of a single neutrino oscillation measurement which cannot be reconciled within a three-neutrino theory. We examine this inconsistency for a single region of baseline to neutrino energy L/EL/E. Assuming that sterile neutrinos account for the anomaly, we find that the {\it local} demands of this datum can require the addition to the theory of one to three sterile neutrinos. We examine the constraints which can be used to determine when more than one neutrino would be required. The results apply only to a given region of L/EL/E. The question of the adequacy of the sterile neutrinos to satisfy a global analysis is not addressed here. Finally, using the results of a 3+2 analysis, we indicate values for unknown mixing matrix elements which would require two sterile neutrinos due to local demands only.Comment: 11 pages, 1 figure, discussion adde
    corecore